File size: 1,708 Bytes
aae499e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
tags:
- bert
- adapterhub:zh/wiki
- adapter-transformers
language:
- zh
license: "apache-2.0"
---

# Adapter `bert-base-multilingual-cased-zh-wiki_pfeiffer` for bert-base-multilingual-cased

Pfeiffer Adapter trained with Masked Language Modelling on Chinese Wikipedia Articles for 250k steps and a batch size of 64.


**This adapter was created for usage with the [Adapters](https://github.com/Adapter-Hub/adapters) library.**

## Usage

First, install `adapters`:

```
pip install -U adapters
```

Now, the adapter can be loaded and activated like this:

```python
from adapters import AutoAdapterModel

model = AutoAdapterModel.from_pretrained("bert-base-multilingual-cased")
adapter_name = model.load_adapter("AdapterHub/bert-base-multilingual-cased-zh-wiki_pfeiffer")
model.set_active_adapters(adapter_name)
```

## Architecture & Training

- Adapter architecture: pfeiffer
- Prediction head: None
- Dataset: [zh/wiki](https://adapterhub.ml/explore/zh/wiki/)

## Author Information

- Author name(s): Jonas Pfeiffer
- Author email: jonas@pfeiffer.ai
- Author links: [Website](https://pfeiffer.ai), [GitHub](https://github.com/jopfeiff), [Twitter](https://twitter.com/@PfeiffJo)

## Versions
- `nd` **(main)**
- `wd`

## Citation

```bibtex
@article{pfeiffer20madx,
  title={{MAD-X}: An {A}dapter-based {F}ramework for {M}ulti-task {C}ross-lingual {T}ransfer},
  author={Pfeiffer, Jonas and Vuli\'{c}, Ivan and Gurevych, Iryna and Ruder, Sebastian},
  journal={arXiv preprint},
  year={2020},
  url={https://arxiv.org/pdf/2005.00052.pdf},
}

```

*This adapter has been auto-imported from https://github.com/Adapter-Hub/Hub/blob/master/adapters/ukp/bert-base-multilingual-cased-zh-wiki_pfeiffer.yaml*.