Initial version.
Browse files- README.md +63 -0
- adapter_config.json +23 -0
- head_config.json +62 -0
- pytorch_adapter.bin +3 -0
- pytorch_model_head.bin +3 -0
README.md
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- roberta
|
4 |
+
- adapterhub:pos/conll2003
|
5 |
+
- adapter-transformers
|
6 |
+
datasets:
|
7 |
+
- conll2003
|
8 |
+
language:
|
9 |
+
- en
|
10 |
+
---
|
11 |
+
|
12 |
+
# Adapter `AdapterHub/roberta-base-pf-conll2003_pos` for roberta-base
|
13 |
+
|
14 |
+
An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [pos/conll2003](https://adapterhub.ml/explore/pos/conll2003/) dataset and includes a prediction head for tagging.
|
15 |
+
|
16 |
+
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
|
17 |
+
|
18 |
+
## Usage
|
19 |
+
|
20 |
+
First, install `adapter-transformers`:
|
21 |
+
|
22 |
+
```
|
23 |
+
pip install -U adapter-transformers
|
24 |
+
```
|
25 |
+
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
|
26 |
+
|
27 |
+
Now, the adapter can be loaded and activated like this:
|
28 |
+
|
29 |
+
```python
|
30 |
+
from transformers import AutoModelWithHeads
|
31 |
+
|
32 |
+
model = AutoModelWithHeads.from_pretrained("roberta-base")
|
33 |
+
adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-conll2003_pos", source="hf")
|
34 |
+
model.active_adapters = adapter_name
|
35 |
+
```
|
36 |
+
|
37 |
+
## Architecture & Training
|
38 |
+
|
39 |
+
The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
|
40 |
+
In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
|
41 |
+
|
42 |
+
|
43 |
+
## Evaluation results
|
44 |
+
|
45 |
+
Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
|
46 |
+
|
47 |
+
## Citation
|
48 |
+
|
49 |
+
If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
|
50 |
+
|
51 |
+
```bibtex
|
52 |
+
@inproceedings{poth-etal-2021-what-to-pre-train-on,
|
53 |
+
title={What to Pre-Train on? Efficient Intermediate Task Selection},
|
54 |
+
author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych},
|
55 |
+
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
|
56 |
+
month = nov,
|
57 |
+
year = "2021",
|
58 |
+
address = "Online",
|
59 |
+
publisher = "Association for Computational Linguistics",
|
60 |
+
url = "https://arxiv.org/abs/2104.08247",
|
61 |
+
pages = "to appear",
|
62 |
+
}
|
63 |
+
```
|
adapter_config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"config": {
|
3 |
+
"adapter_residual_before_ln": false,
|
4 |
+
"cross_adapter": false,
|
5 |
+
"inv_adapter": null,
|
6 |
+
"inv_adapter_reduction_factor": null,
|
7 |
+
"leave_out": [],
|
8 |
+
"ln_after": false,
|
9 |
+
"ln_before": false,
|
10 |
+
"mh_adapter": false,
|
11 |
+
"non_linearity": "relu",
|
12 |
+
"original_ln_after": true,
|
13 |
+
"original_ln_before": true,
|
14 |
+
"output_adapter": true,
|
15 |
+
"reduction_factor": 16,
|
16 |
+
"residual_before_ln": true
|
17 |
+
},
|
18 |
+
"hidden_size": 768,
|
19 |
+
"model_class": "RobertaModelWithHeads",
|
20 |
+
"model_name": "roberta-base",
|
21 |
+
"model_type": "roberta",
|
22 |
+
"name": "conll2003_pos"
|
23 |
+
}
|
head_config.json
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"config": {
|
3 |
+
"activation_function": "tanh",
|
4 |
+
"head_type": "tagging",
|
5 |
+
"label2id": {
|
6 |
+
"\"": 0,
|
7 |
+
"#": 2,
|
8 |
+
"$": 3,
|
9 |
+
"''": 1,
|
10 |
+
"(": 4,
|
11 |
+
")": 5,
|
12 |
+
",": 6,
|
13 |
+
".": 7,
|
14 |
+
":": 8,
|
15 |
+
"CC": 10,
|
16 |
+
"CD": 11,
|
17 |
+
"DT": 12,
|
18 |
+
"EX": 13,
|
19 |
+
"FW": 14,
|
20 |
+
"IN": 15,
|
21 |
+
"JJ": 16,
|
22 |
+
"JJR": 17,
|
23 |
+
"JJS": 18,
|
24 |
+
"LS": 19,
|
25 |
+
"MD": 20,
|
26 |
+
"NN": 21,
|
27 |
+
"NNP": 22,
|
28 |
+
"NNPS": 23,
|
29 |
+
"NNS": 24,
|
30 |
+
"NN|SYM": 25,
|
31 |
+
"PDT": 26,
|
32 |
+
"POS": 27,
|
33 |
+
"PRP": 28,
|
34 |
+
"PRP$": 29,
|
35 |
+
"RB": 30,
|
36 |
+
"RBR": 31,
|
37 |
+
"RBS": 32,
|
38 |
+
"RP": 33,
|
39 |
+
"SYM": 34,
|
40 |
+
"TO": 35,
|
41 |
+
"UH": 36,
|
42 |
+
"VB": 37,
|
43 |
+
"VBD": 38,
|
44 |
+
"VBG": 39,
|
45 |
+
"VBN": 40,
|
46 |
+
"VBP": 41,
|
47 |
+
"VBZ": 42,
|
48 |
+
"WDT": 43,
|
49 |
+
"WP": 44,
|
50 |
+
"WP$": 45,
|
51 |
+
"WRB": 46,
|
52 |
+
"``": 9
|
53 |
+
},
|
54 |
+
"layers": 1,
|
55 |
+
"num_labels": 47
|
56 |
+
},
|
57 |
+
"hidden_size": 768,
|
58 |
+
"model_class": "RobertaModelWithHeads",
|
59 |
+
"model_name": "roberta-base",
|
60 |
+
"model_type": "roberta",
|
61 |
+
"name": "conll2003_pos"
|
62 |
+
}
|
pytorch_adapter.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:23f9a68f25524e3a469f16e18f96dc26b281d3a9c70e4c83dd55aac9f7f6b78a
|
3 |
+
size 3595119
|
pytorch_model_head.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b047fd4721aaf5c79a12a7431ee6fbfea82565b2880f6202320c06bf746ce11
|
3 |
+
size 145591
|