calpt commited on
Commit
e602595
1 Parent(s): 953e983

Add adapter roberta-base_qa_squad2_pfeiffer version 1

Browse files
README.md ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - question-answering
4
+ - adapter-transformers
5
+ - adapterhub:qa/squad2
6
+ - roberta
7
+ datasets:
8
+ - squad_v2
9
+ license: "apache-2.0"
10
+ ---
11
+
12
+ # Adapter `roberta-base_qa_squad2_pfeiffer` for roberta-base
13
+
14
+ Adapter for roberta-base in Pfeiffer architecture trained on the SQuAD 2.0 dataset for 15 epochs with early stopping and a learning rate of 1e-4.
15
+
16
+
17
+ **This adapter was created for usage with the [Adapters](https://github.com/Adapter-Hub/adapters) library.**
18
+
19
+ ## Usage
20
+
21
+ First, install `adapters`:
22
+
23
+ ```
24
+ pip install -U adapters
25
+ ```
26
+
27
+ Now, the adapter can be loaded and activated like this:
28
+
29
+ ```python
30
+ from adapters import AutoAdapterModel
31
+
32
+ model = AutoAdapterModel.from_pretrained("roberta-base")
33
+ adapter_name = model.load_adapter("AdapterHub/roberta-base_qa_squad2_pfeiffer")
34
+ model.set_active_adapters(adapter_name)
35
+ ```
36
+
37
+ ## Architecture & Training
38
+
39
+ - Adapter architecture: pfeiffer
40
+ - Prediction head: question answering
41
+ - Dataset: [SQuAD 2.0](https://rajpurkar.github.io/SQuAD-explorer/)
42
+
43
+ ## Author Information
44
+
45
+ - Author name(s): Clifton Poth
46
+ - Author email: calpt@mail.de
47
+ - Author links: [Website](https://calpt.github.io), [GitHub](https://github.com/calpt), [Twitter](https://twitter.com/@clifapt)
48
+
49
+
50
+
51
+ ## Citation
52
+
53
+ ```bibtex
54
+
55
+ ```
56
+
57
+ *This adapter has been auto-imported from https://github.com/Adapter-Hub/Hub/blob/master/adapters/ukp/roberta-base_qa_squad2_pfeiffer.yaml*.
adapter_config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "config": {
3
+ "adapter_residual_before_ln": false,
4
+ "cross_adapter": false,
5
+ "dropout": 0.0,
6
+ "factorized_phm_W": true,
7
+ "factorized_phm_rule": false,
8
+ "hypercomplex_nonlinearity": "glorot-uniform",
9
+ "init_weights": "bert",
10
+ "inv_adapter": null,
11
+ "inv_adapter_reduction_factor": null,
12
+ "is_parallel": false,
13
+ "learn_phm": true,
14
+ "leave_out": [],
15
+ "ln_after": false,
16
+ "ln_before": false,
17
+ "mh_adapter": false,
18
+ "non_linearity": "relu",
19
+ "original_ln_after": true,
20
+ "original_ln_before": true,
21
+ "output_adapter": true,
22
+ "phm_bias": true,
23
+ "phm_c_init": "normal",
24
+ "phm_dim": 4,
25
+ "phm_init_range": 0.0001,
26
+ "phm_layer": false,
27
+ "phm_rank": 1,
28
+ "reduction_factor": 16,
29
+ "residual_before_ln": true,
30
+ "scaling": 1.0,
31
+ "shared_W_phm": false,
32
+ "shared_phm_rule": true,
33
+ "use_gating": false
34
+ },
35
+ "hidden_size": 768,
36
+ "model_class": "RobertaAdapterModel",
37
+ "model_name": "roberta-base",
38
+ "model_type": "roberta",
39
+ "name": "squad",
40
+ "version": "0.2.0"
41
+ }
head_config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "config": {
3
+ "activation_function": "tanh",
4
+ "dropout_prob": null,
5
+ "head_type": "question_answering",
6
+ "label2id": {
7
+ "LABEL_0": 0,
8
+ "LABEL_1": 1
9
+ },
10
+ "layers": 1,
11
+ "num_labels": 2
12
+ },
13
+ "hidden_size": 768,
14
+ "model_class": "RobertaAdapterModel",
15
+ "model_name": "roberta-base",
16
+ "model_type": "roberta",
17
+ "name": "squad",
18
+ "version": "0.2.0"
19
+ }
pytorch_adapter.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8c5e00719f3ebf4083207373541c42f2125390ad034b83683b992e7baa84999
3
+ size 3594918
pytorch_model_head.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12687c4e72701a2b2f5cac0f00553ba9d52efe867eb4a895adfc969f22709580
3
+ size 7706