AdnanRiaz107 commited on
Commit
93da93c
·
verified ·
1 Parent(s): 2580e86

Delete modeling_phi3.py

Browse files
Files changed (1) hide show
  1. modeling_phi3.py +0 -1606
modeling_phi3.py DELETED
@@ -1,1606 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- """ PyTorch Phi-3 model."""
17
-
18
- import inspect
19
- import math
20
- import warnings
21
- from typing import List, Optional, Tuple, Union
22
-
23
- import torch
24
- import torch.nn.functional as F
25
- import torch.utils.checkpoint
26
- from torch import nn
27
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
28
-
29
- from transformers.activations import ACT2FN
30
- from transformers.cache_utils import Cache, DynamicCache
31
- from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
32
- from transformers.modeling_outputs import (
33
- BaseModelOutputWithPast,
34
- CausalLMOutputWithPast,
35
- SequenceClassifierOutputWithPast,
36
- TokenClassifierOutput,
37
- )
38
- from transformers.modeling_utils import PreTrainedModel
39
- from transformers.utils import (
40
- add_code_sample_docstrings,
41
- add_start_docstrings,
42
- add_start_docstrings_to_model_forward,
43
- is_flash_attn_2_available,
44
- is_flash_attn_greater_or_equal_2_10,
45
- logging,
46
- replace_return_docstrings,
47
- )
48
- from .configuration_phi3 import Phi3Config
49
-
50
-
51
- logger = logging.get_logger(__name__)
52
-
53
- # Transformers scans dependencies in the modeling file, causing issues on conditional loading. The regex only ignores try/catch blocks, but not if statements
54
- # if is_flash_attn_2_available():
55
- _flash_supports_window_size = False
56
- try:
57
- from flash_attn import flash_attn_func, flash_attn_varlen_func
58
- from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
59
-
60
- _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
61
- except ImportError as error:
62
- logger.warning(
63
- f"`flash-attention` package not found, consider installing for better performance: {error}."
64
- )
65
- if not _flash_supports_window_size:
66
- logger.warning(
67
- "Current `flash-attention` does not support `window_size`. Either upgrade or use `attn_implementation='eager'`."
68
- )
69
-
70
- _CHECKPOINT_FOR_DOC = "microsoft/Phi-3-mini-4k-instruct"
71
- _CONFIG_FOR_DOC = "Phi3Config"
72
-
73
- PHI3_PRETRAINED_MODEL_ARCHIVE_LIST = [
74
- "microsoft/Phi-3-mini-4k-instruct",
75
- "microsoft/Phi-3-mini-128k-instruct",
76
- # See all Phi-3 models at https://huggingface.co/models?filter=Phi-3
77
- ]
78
-
79
-
80
- # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Phi3
81
- class Phi3RMSNorm(nn.Module):
82
- def __init__(self, hidden_size, eps=1e-6):
83
- """
84
- Phi3RMSNorm is equivalent to T5LayerNorm
85
- """
86
- super().__init__()
87
- self.weight = nn.Parameter(torch.ones(hidden_size))
88
- self.variance_epsilon = eps
89
-
90
- def forward(self, hidden_states):
91
- input_dtype = hidden_states.dtype
92
- hidden_states = hidden_states.to(torch.float32)
93
- variance = hidden_states.pow(2).mean(-1, keepdim=True)
94
- hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
95
- return self.weight * hidden_states.to(input_dtype)
96
-
97
-
98
- # Copied from transformers.models.llama.modeling_llama._get_unpad_data
99
- def _get_unpad_data(attention_mask):
100
- seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
101
- indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
102
- max_seqlen_in_batch = seqlens_in_batch.max().item()
103
- cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
104
- return (
105
- indices,
106
- cu_seqlens,
107
- max_seqlen_in_batch,
108
- )
109
-
110
-
111
- # Copied from transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding with gemma->phi3, Gemma->Phi3
112
- class Phi3RotaryEmbedding(nn.Module):
113
- def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
114
- super().__init__()
115
-
116
- self.dim = dim
117
- self.max_position_embeddings = max_position_embeddings
118
- self.base = base
119
- self.register_buffer("inv_freq", None, persistent=False)
120
-
121
- @torch.no_grad()
122
- def forward(self, x, position_ids, seq_len=None):
123
- # x: [bs, num_attention_heads, seq_len, head_size]
124
- if self.inv_freq is None:
125
- self.inv_freq = 1.0 / (
126
- self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim)
127
- )
128
- inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
129
- position_ids_expanded = position_ids[:, None, :].float()
130
- # Force float32 since bfloat16 loses precision on long contexts
131
- # See https://github.com/huggingface/transformers/pull/29285
132
- device_type = x.device.type
133
- device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
134
- with torch.autocast(device_type=device_type, enabled=False):
135
- freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
136
- emb = torch.cat((freqs, freqs), dim=-1)
137
- cos = emb.cos()
138
- sin = emb.sin()
139
- return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
140
-
141
-
142
- class Phi3SuScaledRotaryEmbedding(Phi3RotaryEmbedding):
143
- def __init__(self, dim, config, device=None):
144
- super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
145
-
146
- self.short_factor = config.rope_scaling["short_factor"]
147
- self.long_factor = config.rope_scaling["long_factor"]
148
- self.original_max_position_embeddings = config.original_max_position_embeddings
149
-
150
- @torch.no_grad()
151
- def forward(self, x, position_ids, seq_len=None):
152
- seq_len = torch.max(position_ids) + 1
153
- if seq_len > self.original_max_position_embeddings:
154
- ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
155
- else:
156
- ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
157
-
158
- inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim
159
- self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
160
-
161
- inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
162
- position_ids_expanded = position_ids[:, None, :].float()
163
-
164
- # Force float32 since bfloat16 loses precision on long contexts
165
- # See https://github.com/huggingface/transformers/pull/29285
166
- device_type = x.device.type
167
- device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
168
- with torch.autocast(device_type=device_type, enabled=False):
169
- freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
170
- emb = torch.cat((freqs, freqs), dim=-1)
171
-
172
- scale = self.max_position_embeddings / self.original_max_position_embeddings
173
- if scale <= 1.0:
174
- scaling_factor = 1.0
175
- else:
176
- scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings))
177
-
178
- cos = emb.cos() * scaling_factor
179
- sin = emb.sin() * scaling_factor
180
- return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
181
-
182
-
183
- class Phi3YarnScaledRotaryEmbedding(Phi3RotaryEmbedding):
184
- def __init__(self, dim, config, device=None):
185
- super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
186
-
187
- self.short_factor = config.rope_scaling["short_factor"]
188
- self.long_factor = config.rope_scaling["long_factor"]
189
- self.original_max_position_embeddings = config.original_max_position_embeddings
190
-
191
- @torch.no_grad()
192
- def forward(self, x, position_ids, seq_len=None):
193
- seq_len = torch.max(position_ids) + 1
194
- if seq_len > self.original_max_position_embeddings:
195
- ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
196
- else:
197
- ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
198
-
199
- inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim
200
- self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
201
-
202
- inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
203
- position_ids_expanded = position_ids[:, None, :].float()
204
-
205
- # Force float32 since bfloat16 loses precision on long contexts
206
- # See https://github.com/huggingface/transformers/pull/29285
207
- device_type = x.device.type
208
- device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
209
- with torch.autocast(device_type=device_type, enabled=False):
210
- freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
211
- emb = torch.cat((freqs, freqs), dim=-1)
212
-
213
- scale = self.max_position_embeddings / self.original_max_position_embeddings
214
- if scale <= 1.0:
215
- scaling_factor = 1.0
216
- else:
217
- scaling_factor = 0.1 * math.log(scale) + 1.0
218
-
219
- cos = emb.cos() * scaling_factor
220
- sin = emb.sin() * scaling_factor
221
- return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
222
-
223
-
224
- # Copied from transformers.models.llama.modeling_llama.rotate_half
225
- def rotate_half(x):
226
- """Rotates half the hidden dims of the input."""
227
- x1 = x[..., : x.shape[-1] // 2]
228
- x2 = x[..., x.shape[-1] // 2 :]
229
- return torch.cat((-x2, x1), dim=-1)
230
-
231
-
232
- # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
233
- def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
234
- """Applies Rotary Position Embedding to the query and key tensors.
235
-
236
- Args:
237
- q (`torch.Tensor`): The query tensor.
238
- k (`torch.Tensor`): The key tensor.
239
- cos (`torch.Tensor`): The cosine part of the rotary embedding.
240
- sin (`torch.Tensor`): The sine part of the rotary embedding.
241
- position_ids (`torch.Tensor`, *optional*):
242
- Deprecated and unused.
243
- unsqueeze_dim (`int`, *optional*, defaults to 1):
244
- The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
245
- sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
246
- that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
247
- k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
248
- cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
249
- the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
250
- Returns:
251
- `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
252
- """
253
- cos = cos.unsqueeze(unsqueeze_dim)
254
- sin = sin.unsqueeze(unsqueeze_dim)
255
- q_embed = (q * cos) + (rotate_half(q) * sin)
256
- k_embed = (k * cos) + (rotate_half(k) * sin)
257
- return q_embed, k_embed
258
-
259
-
260
- class Phi3MLP(nn.Module):
261
- def __init__(self, config):
262
- super().__init__()
263
-
264
- self.config = config
265
- self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
266
- self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
267
-
268
- self.activation_fn = ACT2FN[config.hidden_act]
269
-
270
- def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
271
- up_states = self.gate_up_proj(hidden_states)
272
-
273
- gate, up_states = up_states.chunk(2, dim=-1)
274
- up_states = up_states * self.activation_fn(gate)
275
-
276
- return self.down_proj(up_states)
277
-
278
-
279
- # Copied from transformers.models.llama.modeling_llama.repeat_kv with llama->phi
280
- def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
281
- """
282
- This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
283
- num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
284
- """
285
- batch, num_key_value_heads, slen, head_dim = hidden_states.shape
286
- if n_rep == 1:
287
- return hidden_states
288
- hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
289
- return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
290
-
291
-
292
- class Phi3Attention(nn.Module):
293
- """Multi-headed attention from 'Attention Is All You Need' paper"""
294
-
295
- def __init__(self, config: Phi3Config, layer_idx: Optional[int] = None):
296
- super().__init__()
297
- self.config = config
298
- self.layer_idx = layer_idx
299
- if layer_idx is None:
300
- logger.warning_once(
301
- f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
302
- "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
303
- "when creating this class."
304
- )
305
-
306
- self.attention_dropout = config.attention_dropout
307
- self.hidden_size = config.hidden_size
308
- self.num_heads = config.num_attention_heads
309
- self.head_dim = self.hidden_size // self.num_heads
310
- self.num_key_value_heads = config.num_key_value_heads
311
- self.num_key_value_groups = self.num_heads // self.num_key_value_heads
312
- self.max_position_embeddings = config.max_position_embeddings
313
- self.original_max_position_embeddings = config.original_max_position_embeddings
314
- self.rope_theta = config.rope_theta
315
- self.rope_scaling = config.rope_scaling
316
- self.is_causal = True
317
-
318
- if (self.head_dim * self.num_heads) != self.hidden_size:
319
- raise ValueError(
320
- f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
321
- f" and `num_heads`: {self.num_heads})."
322
- )
323
-
324
- op_size = self.num_heads * self.head_dim + 2 * (self.num_key_value_heads * self.head_dim)
325
- self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
326
- self.qkv_proj = nn.Linear(self.hidden_size, op_size, bias=False)
327
- self._init_rope()
328
-
329
- def _init_rope(self):
330
- if self.rope_scaling is None:
331
- self.rotary_emb = Phi3RotaryEmbedding(
332
- self.head_dim,
333
- max_position_embeddings=self.max_position_embeddings,
334
- base=self.rope_theta,
335
- )
336
- else:
337
- scaling_type = self.config.rope_scaling["type"]
338
- if scaling_type == "su":
339
- self.rotary_emb = Phi3SuScaledRotaryEmbedding(self.head_dim, self.config)
340
- elif scaling_type == "yarn":
341
- self.rotary_emb = Phi3YarnScaledRotaryEmbedding(self.head_dim, self.config)
342
- else:
343
- raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
344
-
345
- def forward(
346
- self,
347
- hidden_states: torch.Tensor,
348
- attention_mask: Optional[torch.Tensor] = None,
349
- position_ids: Optional[torch.LongTensor] = None,
350
- past_key_value: Optional[Cache] = None,
351
- output_attentions: bool = False,
352
- use_cache: bool = False,
353
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
354
- logger.warning_once("You are not running the flash-attention implementation, expect numerical differences.")
355
-
356
- bsz, q_len, _ = hidden_states.size()
357
-
358
- qkv = self.qkv_proj(hidden_states)
359
- query_pos = self.num_heads * self.head_dim
360
- query_states = qkv[..., :query_pos]
361
- key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
362
- value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
363
-
364
- query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
365
- key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
366
- value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
367
-
368
- kv_seq_len = key_states.shape[-2]
369
- if past_key_value is not None:
370
- if self.layer_idx is None:
371
- raise ValueError(
372
- f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
373
- "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
374
- "with a layer index."
375
- )
376
- kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
377
- cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
378
-
379
- query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
380
-
381
- if past_key_value is not None:
382
- cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
383
- key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
384
-
385
- # repeat k/v heads if n_kv_heads < n_heads
386
- key_states = repeat_kv(key_states, self.num_key_value_groups)
387
- value_states = repeat_kv(value_states, self.num_key_value_groups)
388
-
389
- attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
390
-
391
- if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
392
- raise ValueError(
393
- f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
394
- f" {attn_weights.size()}"
395
- )
396
-
397
- if attention_mask is not None:
398
- if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
399
- raise ValueError(
400
- f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
401
- )
402
- attn_weights = attn_weights + attention_mask
403
-
404
- # upcast attention to fp32
405
- attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
406
- attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
407
-
408
- attn_output = torch.matmul(attn_weights, value_states)
409
-
410
- if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
411
- raise ValueError(
412
- f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
413
- f" {attn_output.size()}"
414
- )
415
-
416
- attn_output = attn_output.transpose(1, 2).contiguous()
417
- attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
418
-
419
- attn_output = self.o_proj(attn_output)
420
-
421
- if not output_attentions:
422
- attn_weights = None
423
-
424
- return attn_output, attn_weights, past_key_value
425
-
426
-
427
- class Phi3FlashAttention2(Phi3Attention):
428
- """
429
- Phi-3 flash attention module. This module inherits from `Phi3Attention` as the weights of the module stays
430
- untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
431
- flash attention and deal with padding tokens in case the input contains any of them.
432
- """
433
-
434
- # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
435
- def __init__(self, *args, **kwargs):
436
- super().__init__(*args, **kwargs)
437
-
438
- # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
439
- # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
440
- # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
441
- self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
442
-
443
- def forward(
444
- self,
445
- hidden_states: torch.Tensor,
446
- attention_mask: Optional[torch.LongTensor] = None,
447
- position_ids: Optional[torch.LongTensor] = None,
448
- past_key_value: Optional[Cache] = None,
449
- output_attentions: bool = False,
450
- use_cache: bool = False,
451
- **kwargs,
452
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
453
- # Phi3FlashAttention2 attention does not support output_attentions
454
-
455
- if not _flash_supports_window_size:
456
- logger.warning_once(
457
- "The current flash attention version does not support sliding window attention. Please use `attn_implementation='eager'` or upgrade flash-attn library."
458
- )
459
- raise ValueError("The current flash attention version does not support sliding window attention.")
460
-
461
- output_attentions = False
462
-
463
- if "padding_mask" in kwargs:
464
- warnings.warn(
465
- "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
466
- )
467
-
468
- # overwrite attention_mask with padding_mask
469
- attention_mask = kwargs.pop("padding_mask")
470
-
471
- bsz, q_len, _ = hidden_states.size()
472
-
473
- qkv = self.qkv_proj(hidden_states)
474
- query_pos = self.num_heads * self.head_dim
475
- query_states = qkv[..., :query_pos]
476
- key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
477
- value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
478
-
479
- # Flash attention requires the input to have the shape
480
- # batch_size x seq_length x head_dim x hidden_dim
481
- # therefore we just need to keep the original shape
482
- query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
483
- key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
484
- value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
485
-
486
- kv_seq_len = key_states.shape[-2]
487
- if past_key_value is not None:
488
- if self.layer_idx is None:
489
- raise ValueError(
490
- f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
491
- "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
492
- "with a layer index."
493
- )
494
- kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
495
-
496
- # Because the input can be padded, the absolute sequence length depends on the max position id.
497
- rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
498
- cos, sin = self.rotary_emb(value_states, position_ids, seq_len=rotary_seq_len)
499
-
500
- query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
501
-
502
- use_sliding_windows = (
503
- _flash_supports_window_size
504
- and getattr(self.config, "sliding_window", None) is not None
505
- and kv_seq_len > self.config.sliding_window
506
- )
507
-
508
- if past_key_value is not None:
509
- # Activate slicing cache only if the config has a value `sliding_windows` attribute
510
- cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
511
- if (
512
- getattr(self.config, "sliding_window", None) is not None
513
- and kv_seq_len > self.config.sliding_window
514
- and cache_has_contents
515
- ):
516
- slicing_tokens = 1 - self.config.sliding_window
517
-
518
- past_key = past_key_value[self.layer_idx][0]
519
- past_value = past_key_value[self.layer_idx][1]
520
-
521
- past_key = past_key[:, :, slicing_tokens:, :].contiguous()
522
- past_value = past_value[:, :, slicing_tokens:, :].contiguous()
523
-
524
- if past_key.shape[-2] != self.config.sliding_window - 1:
525
- raise ValueError(
526
- f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
527
- f" {past_key.shape}"
528
- )
529
-
530
- if attention_mask is not None:
531
- attention_mask = attention_mask[:, slicing_tokens:]
532
- attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
533
-
534
- cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
535
- key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
536
-
537
- # repeat k/v heads if n_kv_heads < n_heads
538
- key_states = repeat_kv(key_states, self.num_key_value_groups)
539
- value_states = repeat_kv(value_states, self.num_key_value_groups)
540
-
541
- attn_dropout = self.attention_dropout if self.training else 0.0
542
-
543
- # In PEFT, usually we cast the layer norms in float32 for training stability reasons
544
- # therefore the input hidden states gets silently casted in float32. Hence, we need
545
- # cast them back in the correct dtype just to be sure everything works as expected.
546
- # This might slowdown training & inference so it is recommended to not cast the LayerNorms
547
- # in fp32.
548
-
549
- if query_states.dtype == torch.float32:
550
- if torch.is_autocast_enabled():
551
- target_dtype = torch.get_autocast_gpu_dtype()
552
- # Handle the case where the model is quantized
553
- elif hasattr(self.config, "_pre_quantization_dtype"):
554
- target_dtype = self.config._pre_quantization_dtype
555
- else:
556
- target_dtype = self.qkv_proj.weight.dtype
557
-
558
- logger.warning_once(
559
- f"The input hidden states seems to be silently casted in float32, this might be related to"
560
- f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
561
- f" {target_dtype}."
562
- )
563
-
564
- query_states = query_states.to(target_dtype)
565
- key_states = key_states.to(target_dtype)
566
- value_states = value_states.to(target_dtype)
567
-
568
- # Reashape to the expected shape for Flash Attention
569
- query_states = query_states.transpose(1, 2)
570
- key_states = key_states.transpose(1, 2)
571
- value_states = value_states.transpose(1, 2)
572
-
573
- attn_output = self._flash_attention_forward(
574
- query_states,
575
- key_states,
576
- value_states,
577
- attention_mask,
578
- q_len,
579
- dropout=attn_dropout,
580
- use_sliding_windows=use_sliding_windows,
581
- )
582
-
583
- attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
584
- attn_output = self.o_proj(attn_output)
585
-
586
- if not output_attentions:
587
- attn_weights = None
588
-
589
- return attn_output, attn_weights, past_key_value
590
-
591
- # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._flash_attention_forward
592
- def _flash_attention_forward(
593
- self,
594
- query_states,
595
- key_states,
596
- value_states,
597
- attention_mask,
598
- query_length,
599
- dropout=0.0,
600
- softmax_scale=None,
601
- use_sliding_windows=False,
602
- ):
603
- """
604
- Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
605
- first unpad the input, then computes the attention scores and pad the final attention scores.
606
-
607
- Args:
608
- query_states (`torch.Tensor`):
609
- Input query states to be passed to Flash Attention API
610
- key_states (`torch.Tensor`):
611
- Input key states to be passed to Flash Attention API
612
- value_states (`torch.Tensor`):
613
- Input value states to be passed to Flash Attention API
614
- attention_mask (`torch.Tensor`):
615
- The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
616
- position of padding tokens and 1 for the position of non-padding tokens.
617
- dropout (`float`):
618
- Attention dropout
619
- softmax_scale (`float`, *optional*):
620
- The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
621
- use_sliding_windows (`bool`, *optional*):
622
- Whether to activate sliding window attention.
623
- """
624
- if not self._flash_attn_uses_top_left_mask:
625
- causal = self.is_causal
626
- else:
627
- # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
628
- causal = self.is_causal and query_length != 1
629
-
630
- # Contains at least one padding token in the sequence
631
- if attention_mask is not None:
632
- batch_size = query_states.shape[0]
633
- query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
634
- query_states, key_states, value_states, attention_mask, query_length
635
- )
636
-
637
- cu_seqlens_q, cu_seqlens_k = cu_seq_lens
638
- max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
639
-
640
- if not use_sliding_windows:
641
- attn_output_unpad = flash_attn_varlen_func(
642
- query_states,
643
- key_states,
644
- value_states,
645
- cu_seqlens_q=cu_seqlens_q,
646
- cu_seqlens_k=cu_seqlens_k,
647
- max_seqlen_q=max_seqlen_in_batch_q,
648
- max_seqlen_k=max_seqlen_in_batch_k,
649
- dropout_p=dropout,
650
- softmax_scale=softmax_scale,
651
- causal=causal,
652
- )
653
- else:
654
- attn_output_unpad = flash_attn_varlen_func(
655
- query_states,
656
- key_states,
657
- value_states,
658
- cu_seqlens_q=cu_seqlens_q,
659
- cu_seqlens_k=cu_seqlens_k,
660
- max_seqlen_q=max_seqlen_in_batch_q,
661
- max_seqlen_k=max_seqlen_in_batch_k,
662
- dropout_p=dropout,
663
- softmax_scale=softmax_scale,
664
- causal=causal,
665
- window_size=(self.config.sliding_window, self.config.sliding_window),
666
- )
667
-
668
- attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
669
- else:
670
- if not use_sliding_windows:
671
- attn_output = flash_attn_func(
672
- query_states,
673
- key_states,
674
- value_states,
675
- dropout,
676
- softmax_scale=softmax_scale,
677
- causal=causal,
678
- )
679
- else:
680
- attn_output = flash_attn_func(
681
- query_states,
682
- key_states,
683
- value_states,
684
- dropout,
685
- softmax_scale=softmax_scale,
686
- causal=causal,
687
- window_size=(self.config.sliding_window, self.config.sliding_window),
688
- )
689
-
690
- return attn_output
691
-
692
- # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input
693
- def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
694
- batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
695
-
696
- # On the first iteration we need to properly re-create the padding mask
697
- # by slicing it on the proper place
698
- if kv_seq_len != attention_mask.shape[-1]:
699
- attention_mask_num_tokens = attention_mask.shape[-1]
700
- attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
701
-
702
- indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
703
-
704
- key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
705
- value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
706
-
707
- if query_length == kv_seq_len:
708
- query_layer = index_first_axis(
709
- query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
710
- )
711
- cu_seqlens_q = cu_seqlens_k
712
- max_seqlen_in_batch_q = max_seqlen_in_batch_k
713
- indices_q = indices_k
714
- elif query_length == 1:
715
- max_seqlen_in_batch_q = 1
716
- cu_seqlens_q = torch.arange(
717
- batch_size + 1, dtype=torch.int32, device=query_layer.device
718
- ) # There is a memcpy here, that is very bad.
719
- indices_q = cu_seqlens_q[:-1]
720
- query_layer = query_layer.squeeze(1)
721
- else:
722
- # The -q_len: slice assumes left padding.
723
- attention_mask = attention_mask[:, -query_length:]
724
- query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
725
-
726
- return (
727
- query_layer,
728
- key_layer,
729
- value_layer,
730
- indices_q,
731
- (cu_seqlens_q, cu_seqlens_k),
732
- (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
733
- )
734
-
735
-
736
- # copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Phi3
737
- # TODO @Arthur no longer copied from LLama after static cache
738
- class Phi3SdpaAttention(Phi3Attention):
739
- """
740
- Phi3 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
741
- `Phi3Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
742
- SDPA API.
743
- """
744
-
745
- # Adapted from Phi3Attention.forward
746
- def forward(
747
- self,
748
- hidden_states: torch.Tensor,
749
- attention_mask: Optional[torch.Tensor] = None,
750
- position_ids: Optional[torch.LongTensor] = None,
751
- past_key_value: Optional[Cache] = None,
752
- output_attentions: bool = False,
753
- use_cache: bool = False,
754
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
755
- if output_attentions:
756
- # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
757
- logger.warning_once(
758
- "Phi3Model is using Phi3SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
759
- 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
760
- )
761
- return super().forward(
762
- hidden_states=hidden_states,
763
- attention_mask=attention_mask,
764
- position_ids=position_ids,
765
- past_key_value=past_key_value,
766
- output_attentions=output_attentions,
767
- use_cache=use_cache,
768
- )
769
-
770
- bsz, q_len, _ = hidden_states.size()
771
-
772
- qkv = self.qkv_proj(hidden_states)
773
- query_pos = self.num_heads * self.head_dim
774
- query_states = qkv[..., :query_pos]
775
- key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
776
- value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
777
-
778
- query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
779
- key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
780
- value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
781
-
782
- kv_seq_len = key_states.shape[-2]
783
- if past_key_value is not None:
784
- kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
785
- cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
786
-
787
- query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
788
-
789
- if past_key_value is not None:
790
- cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
791
- key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
792
-
793
- key_states = repeat_kv(key_states, self.num_key_value_groups)
794
- value_states = repeat_kv(value_states, self.num_key_value_groups)
795
-
796
- if attention_mask is not None:
797
- if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
798
- raise ValueError(
799
- f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
800
- )
801
-
802
- # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
803
- # Reference: https://github.com/pytorch/pytorch/issues/112577.
804
- if query_states.device.type == "cuda" and attention_mask is not None:
805
- query_states = query_states.contiguous()
806
- key_states = key_states.contiguous()
807
- value_states = value_states.contiguous()
808
-
809
- attn_output = torch.nn.functional.scaled_dot_product_attention(
810
- query_states,
811
- key_states,
812
- value_states,
813
- attn_mask=attention_mask,
814
- dropout_p=self.attention_dropout if self.training else 0.0,
815
- # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
816
- is_causal=self.is_causal and attention_mask is None and q_len > 1,
817
- )
818
-
819
- attn_output = attn_output.transpose(1, 2).contiguous()
820
- attn_output = attn_output.view(bsz, q_len, self.hidden_size)
821
-
822
- attn_output = self.o_proj(attn_output)
823
-
824
- return attn_output, None, past_key_value
825
-
826
-
827
- PHI3_ATTENTION_CLASSES = {
828
- "eager": Phi3Attention,
829
- "flash_attention_2": Phi3FlashAttention2,
830
- "sdpa": Phi3SdpaAttention,
831
- }
832
-
833
-
834
- class Phi3DecoderLayer(nn.Module):
835
- def __init__(self, config: Phi3Config, layer_idx: int):
836
- super().__init__()
837
-
838
- self.config = config
839
- self.self_attn = PHI3_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
840
-
841
- self.mlp = Phi3MLP(config)
842
- self.input_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
843
-
844
- self.resid_attn_dropout = nn.Dropout(config.resid_pdrop)
845
- self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop)
846
- self.post_attention_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
847
-
848
- def forward(
849
- self,
850
- hidden_states: torch.Tensor,
851
- attention_mask: Optional[torch.Tensor] = None,
852
- position_ids: Optional[torch.LongTensor] = None,
853
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
854
- output_attentions: Optional[bool] = False,
855
- use_cache: Optional[bool] = False,
856
- **kwargs,
857
- ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
858
- if "padding_mask" in kwargs:
859
- warnings.warn(
860
- "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
861
- )
862
- """
863
- Args:
864
- hidden_states (`torch.FloatTensor`):
865
- input to the layer of shape `(batch, seq_len, embed_dim)`
866
- attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
867
- `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
868
- position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
869
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
870
- `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
871
- output_attentions (`bool`, *optional*):
872
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
873
- returned tensors for more detail.
874
- use_cache (`bool`, *optional*):
875
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
876
- (see `past_key_values`).
877
- past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
878
- """
879
-
880
- residual = hidden_states
881
-
882
- hidden_states = self.input_layernorm(hidden_states)
883
-
884
- # Self Attention
885
- attn_outputs, self_attn_weights, present_key_value = self.self_attn(
886
- hidden_states=hidden_states,
887
- attention_mask=attention_mask,
888
- position_ids=position_ids,
889
- past_key_value=past_key_value,
890
- output_attentions=output_attentions,
891
- use_cache=use_cache,
892
- )
893
-
894
- hidden_states = residual + self.resid_attn_dropout(attn_outputs)
895
-
896
- residual = hidden_states
897
- hidden_states = self.post_attention_layernorm(hidden_states)
898
- hidden_states = self.mlp(hidden_states)
899
- hidden_states = residual + self.resid_mlp_dropout(hidden_states)
900
-
901
- outputs = (hidden_states,)
902
-
903
- if output_attentions:
904
- outputs += (self_attn_weights,)
905
-
906
- if use_cache:
907
- outputs += (present_key_value,)
908
-
909
- return outputs
910
-
911
-
912
- PHI3_START_DOCSTRING = r"""
913
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
914
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
915
- etc.)
916
-
917
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
918
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
919
- and behavior.
920
-
921
- Parameters:
922
- config ([`Phi3Config`]):
923
- Model configuration class with all the parameters of the model. Initializing with a config file does not
924
- load the weights associated with the model, only the configuration. Check out the
925
- [`~PreTrainedModel.from_pretrained`] method to load the model weights.
926
- """
927
-
928
-
929
- @add_start_docstrings(
930
- "The bare Phi-3 model outputting raw hidden-states without any specific head on top.",
931
- PHI3_START_DOCSTRING,
932
- )
933
- class Phi3PreTrainedModel(PreTrainedModel):
934
- config_class = Phi3Config
935
- base_model_prefix = "model"
936
- supports_gradient_checkpointing = True
937
- _no_split_modules = ["Phi3DecoderLayer"]
938
- _skip_keys_device_placement = "past_key_values"
939
- _supports_flash_attn_2 = True
940
- _supports_sdpa = False
941
- _supports_cache_class = True
942
-
943
- _version = "0.0.5"
944
-
945
- def _init_weights(self, module):
946
- std = self.config.initializer_range
947
- if isinstance(module, nn.Linear):
948
- module.weight.data.normal_(mean=0.0, std=std)
949
- if module.bias is not None:
950
- module.bias.data.zero_()
951
- elif isinstance(module, nn.Embedding):
952
- module.weight.data.normal_(mean=0.0, std=std)
953
- if module.padding_idx is not None:
954
- module.weight.data[module.padding_idx].zero_()
955
-
956
-
957
- PHI3_INPUTS_DOCSTRING = r"""
958
- Args:
959
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
960
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
961
- it.
962
-
963
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
964
- [`PreTrainedTokenizer.__call__`] for details.
965
-
966
- [What are input IDs?](../glossary#input-ids)
967
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
968
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
969
-
970
- - 1 for tokens that are **not masked**,
971
- - 0 for tokens that are **masked**.
972
-
973
- [What are attention masks?](../glossary#attention-mask)
974
-
975
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
976
- [`PreTrainedTokenizer.__call__`] for details.
977
-
978
- If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
979
- `past_key_values`).
980
-
981
- If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
982
- and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
983
- information on the default strategy.
984
-
985
- - 1 indicates the head is **not masked**,
986
- - 0 indicates the head is **masked**.
987
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
988
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
989
- config.n_positions - 1]`.
990
-
991
- [What are position IDs?](../glossary#position-ids)
992
- past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
993
- Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
994
- blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
995
- returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
996
-
997
- Two formats are allowed:
998
- - a [`~cache_utils.Cache`] instance;
999
- - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
1000
- shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
1001
- cache format.
1002
-
1003
- The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
1004
- legacy cache format will be returned.
1005
-
1006
- If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
1007
- have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
1008
- of shape `(batch_size, sequence_length)`.
1009
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1010
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1011
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1012
- model's internal embedding lookup matrix.
1013
- use_cache (`bool`, *optional*):
1014
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1015
- `past_key_values`).
1016
- output_attentions (`bool`, *optional*):
1017
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1018
- tensors for more detail.
1019
- output_hidden_states (`bool`, *optional*):
1020
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1021
- more detail.
1022
- return_dict (`bool`, *optional*):
1023
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1024
- """
1025
-
1026
-
1027
- @add_start_docstrings(
1028
- "The bare Phi-3 model outputting raw hidden-states without any specific head on top.",
1029
- PHI3_START_DOCSTRING,
1030
- )
1031
- class Phi3Model(Phi3PreTrainedModel):
1032
- """
1033
- Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi3DecoderLayer`]
1034
-
1035
- Args:
1036
- config: Phi3Config
1037
- """
1038
-
1039
- def __init__(self, config: Phi3Config):
1040
- super().__init__(config)
1041
- self.padding_idx = config.pad_token_id
1042
- self.vocab_size = config.vocab_size
1043
-
1044
- self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
1045
- self.embed_dropout = nn.Dropout(config.embd_pdrop)
1046
- self.layers = nn.ModuleList(
1047
- [Phi3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
1048
- )
1049
- self._attn_implementation = config._attn_implementation
1050
- self.norm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1051
-
1052
- self.gradient_checkpointing = False
1053
- # Initialize weights and apply final processing
1054
- self.post_init()
1055
-
1056
- def get_input_embeddings(self):
1057
- return self.embed_tokens
1058
-
1059
- def set_input_embeddings(self, value):
1060
- self.embed_tokens = value
1061
-
1062
- @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1063
- def forward(
1064
- self,
1065
- input_ids: torch.LongTensor = None,
1066
- attention_mask: Optional[torch.Tensor] = None,
1067
- position_ids: Optional[torch.LongTensor] = None,
1068
- past_key_values: Optional[List[torch.FloatTensor]] = None,
1069
- inputs_embeds: Optional[torch.FloatTensor] = None,
1070
- use_cache: Optional[bool] = None,
1071
- output_attentions: Optional[bool] = None,
1072
- output_hidden_states: Optional[bool] = None,
1073
- return_dict: Optional[bool] = None,
1074
- ) -> Union[Tuple, BaseModelOutputWithPast]:
1075
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1076
- output_hidden_states = (
1077
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1078
- )
1079
- use_cache = use_cache if use_cache is not None else self.config.use_cache
1080
-
1081
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1082
-
1083
- # retrieve input_ids and inputs_embeds
1084
- if input_ids is not None and inputs_embeds is not None:
1085
- raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
1086
- elif input_ids is not None:
1087
- batch_size, seq_length = input_ids.shape[:2]
1088
- elif inputs_embeds is not None:
1089
- batch_size, seq_length = inputs_embeds.shape[:2]
1090
- else:
1091
- raise ValueError("You have to specify either input_ids or inputs_embeds")
1092
-
1093
- past_key_values_length = 0
1094
-
1095
- if self.gradient_checkpointing and self.training:
1096
- if use_cache:
1097
- logger.warning_once(
1098
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1099
- )
1100
- use_cache = False
1101
-
1102
- if use_cache:
1103
- use_legacy_cache = not isinstance(past_key_values, Cache)
1104
- if use_legacy_cache:
1105
- past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1106
- past_key_values_length = past_key_values.get_usable_length(seq_length)
1107
-
1108
- if position_ids is None:
1109
- device = input_ids.device if input_ids is not None else inputs_embeds.device
1110
- position_ids = torch.arange(
1111
- past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1112
- )
1113
- position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
1114
- else:
1115
- position_ids = position_ids.view(-1, seq_length).long()
1116
-
1117
- if inputs_embeds is None:
1118
- inputs_embeds = self.embed_tokens(input_ids)
1119
-
1120
- if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
1121
- is_padding_right = attention_mask[:, -1].sum().item() != batch_size
1122
- if is_padding_right:
1123
- raise ValueError(
1124
- "You are attempting to perform batched generation with padding_side='right'"
1125
- " this may lead to unexpected behaviour for Flash Attention version of Phi3. Make sure to "
1126
- " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
1127
- )
1128
-
1129
- if self._attn_implementation == "flash_attention_2":
1130
- # 2d mask is passed through the layers
1131
- attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1132
- else:
1133
- # 4d mask is passed through the layers
1134
- attention_mask = _prepare_4d_causal_attention_mask(
1135
- attention_mask,
1136
- (batch_size, seq_length),
1137
- inputs_embeds,
1138
- past_key_values_length,
1139
- sliding_window=self.config.sliding_window,
1140
- )
1141
-
1142
- hidden_states = inputs_embeds
1143
-
1144
- # decoder layers
1145
- all_hidden_states = () if output_hidden_states else None
1146
- all_self_attns = () if output_attentions else None
1147
- next_decoder_cache = None
1148
-
1149
- for decoder_layer in self.layers:
1150
- if output_hidden_states:
1151
- all_hidden_states += (hidden_states,)
1152
-
1153
- if self.gradient_checkpointing and self.training:
1154
- layer_outputs = self._gradient_checkpointing_func(
1155
- decoder_layer.__call__,
1156
- hidden_states,
1157
- attention_mask,
1158
- position_ids,
1159
- past_key_values,
1160
- output_attentions,
1161
- use_cache,
1162
- )
1163
- else:
1164
- layer_outputs = decoder_layer(
1165
- hidden_states,
1166
- attention_mask=attention_mask,
1167
- position_ids=position_ids,
1168
- past_key_value=past_key_values,
1169
- output_attentions=output_attentions,
1170
- use_cache=use_cache,
1171
- )
1172
-
1173
- hidden_states = layer_outputs[0]
1174
-
1175
- if use_cache:
1176
- next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1177
-
1178
- if output_attentions:
1179
- all_self_attns += (layer_outputs[1],)
1180
-
1181
- hidden_states = self.norm(hidden_states)
1182
-
1183
- # add hidden states from the last decoder layer
1184
- if output_hidden_states:
1185
- all_hidden_states += (hidden_states,)
1186
-
1187
- next_cache = None
1188
- if use_cache:
1189
- next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
1190
- if not return_dict:
1191
- return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1192
- return BaseModelOutputWithPast(
1193
- last_hidden_state=hidden_states,
1194
- past_key_values=next_cache,
1195
- hidden_states=all_hidden_states,
1196
- attentions=all_self_attns,
1197
- )
1198
-
1199
-
1200
- class Phi3ForCausalLM(Phi3PreTrainedModel):
1201
- _tied_weights_keys = ["lm_head.weight"]
1202
-
1203
- # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi3
1204
- def __init__(self, config):
1205
- super().__init__(config)
1206
- self.model = Phi3Model(config)
1207
- self.vocab_size = config.vocab_size
1208
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1209
-
1210
- # Initialize weights and apply final processing
1211
- self.post_init()
1212
-
1213
- # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings
1214
- def get_input_embeddings(self):
1215
- return self.model.embed_tokens
1216
-
1217
- # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings
1218
- def set_input_embeddings(self, value):
1219
- self.model.embed_tokens = value
1220
-
1221
- # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings
1222
- def get_output_embeddings(self):
1223
- return self.lm_head
1224
-
1225
- # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings
1226
- def set_output_embeddings(self, new_embeddings):
1227
- self.lm_head = new_embeddings
1228
-
1229
- # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder
1230
- def set_decoder(self, decoder):
1231
- self.model = decoder
1232
-
1233
- # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder
1234
- def get_decoder(self):
1235
- return self.model
1236
-
1237
- # Ignore copy
1238
- @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1239
- @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1240
- def forward(
1241
- self,
1242
- input_ids: torch.LongTensor = None,
1243
- attention_mask: Optional[torch.Tensor] = None,
1244
- position_ids: Optional[torch.LongTensor] = None,
1245
- past_key_values: Optional[List[torch.FloatTensor]] = None,
1246
- inputs_embeds: Optional[torch.FloatTensor] = None,
1247
- labels: Optional[torch.LongTensor] = None,
1248
- use_cache: Optional[bool] = None,
1249
- output_attentions: Optional[bool] = None,
1250
- output_hidden_states: Optional[bool] = None,
1251
- return_dict: Optional[bool] = None,
1252
- ) -> Union[Tuple, CausalLMOutputWithPast]:
1253
- r"""
1254
- Args:
1255
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1256
- Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1257
- config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1258
- (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1259
-
1260
- Returns:
1261
-
1262
- Example:
1263
-
1264
- ```python
1265
- >>> from transformers import AutoTokenizer, Phi3ForCausalLM
1266
-
1267
- >>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
1268
- >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
1269
-
1270
- >>> prompt = "This is an example script ."
1271
- >>> inputs = tokenizer(prompt, return_tensors="pt")
1272
-
1273
- >>> # Generate
1274
- >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1275
- >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1276
- 'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
1277
- ```"""
1278
-
1279
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1280
- output_hidden_states = (
1281
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1282
- )
1283
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1284
-
1285
- # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1286
- outputs = self.model(
1287
- input_ids=input_ids,
1288
- attention_mask=attention_mask,
1289
- position_ids=position_ids,
1290
- past_key_values=past_key_values,
1291
- inputs_embeds=inputs_embeds,
1292
- use_cache=use_cache,
1293
- output_attentions=output_attentions,
1294
- output_hidden_states=output_hidden_states,
1295
- return_dict=return_dict,
1296
- )
1297
-
1298
- hidden_states = outputs[0]
1299
- logits = self.lm_head(hidden_states)
1300
- logits = logits.float()
1301
-
1302
- loss = None
1303
- if labels is not None:
1304
- # Shift so that tokens < n predict n
1305
- shift_logits = logits[..., :-1, :].contiguous()
1306
- shift_labels = labels[..., 1:].contiguous()
1307
- # Flatten the tokens
1308
- loss_fct = CrossEntropyLoss()
1309
- shift_logits = shift_logits.view(-1, self.config.vocab_size)
1310
- shift_labels = shift_labels.view(-1)
1311
- # Enable model parallelism
1312
- shift_labels = shift_labels.to(shift_logits.device)
1313
- loss = loss_fct(shift_logits, shift_labels)
1314
-
1315
- if not return_dict:
1316
- output = (logits,) + outputs[1:]
1317
- return (loss,) + output if loss is not None else output
1318
-
1319
- return CausalLMOutputWithPast(
1320
- loss=loss,
1321
- logits=logits,
1322
- past_key_values=outputs.past_key_values,
1323
- hidden_states=outputs.hidden_states,
1324
- attentions=outputs.attentions,
1325
- )
1326
-
1327
- # Copied from transformers.models.persimmon.modeling_persimmon.PersimmonForCausalLM.prepare_inputs_for_generation
1328
- def prepare_inputs_for_generation(
1329
- self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1330
- ):
1331
- if past_key_values is not None:
1332
- if isinstance(past_key_values, Cache):
1333
- cache_length = past_key_values.get_seq_length()
1334
- past_length = past_key_values.seen_tokens
1335
- max_cache_length = past_key_values.get_max_length()
1336
- else:
1337
- cache_length = past_length = past_key_values[0][0].shape[2]
1338
- max_cache_length = None
1339
-
1340
- # Keep only the unprocessed tokens:
1341
- # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1342
- # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1343
- # input)
1344
- if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1345
- input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1346
- # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1347
- # input_ids based on the past_length.
1348
- elif past_length < input_ids.shape[1]:
1349
- input_ids = input_ids[:, past_length:]
1350
- # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1351
-
1352
- # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1353
- if (
1354
- max_cache_length is not None
1355
- and attention_mask is not None
1356
- and cache_length + input_ids.shape[1] > max_cache_length
1357
- ):
1358
- attention_mask = attention_mask[:, -max_cache_length:]
1359
-
1360
- position_ids = kwargs.get("position_ids", None)
1361
- if attention_mask is not None and position_ids is None:
1362
- # create position_ids on the fly for batch generation
1363
- position_ids = attention_mask.long().cumsum(-1) - 1
1364
- position_ids.masked_fill_(attention_mask == 0, 1)
1365
- if past_key_values:
1366
- position_ids = position_ids[:, -input_ids.shape[1] :]
1367
-
1368
- # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1369
- if inputs_embeds is not None and past_key_values is None:
1370
- model_inputs = {"inputs_embeds": inputs_embeds}
1371
- else:
1372
- model_inputs = {"input_ids": input_ids}
1373
-
1374
- model_inputs.update(
1375
- {
1376
- "position_ids": position_ids,
1377
- "past_key_values": past_key_values,
1378
- "use_cache": kwargs.get("use_cache"),
1379
- "attention_mask": attention_mask,
1380
- }
1381
- )
1382
- return model_inputs
1383
-
1384
- @staticmethod
1385
- # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM._reorder_cache
1386
- def _reorder_cache(past_key_values, beam_idx):
1387
- reordered_past = ()
1388
- for layer_past in past_key_values:
1389
- reordered_past += (
1390
- tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1391
- )
1392
- return reordered_past
1393
-
1394
-
1395
- @add_start_docstrings(
1396
- """
1397
- The [`Phi3Model`] with a sequence classification head on top (linear layer).
1398
-
1399
- [`Phi3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1400
- (e.g. GPT-2) do.
1401
-
1402
- Since it does classification on the last token, it requires to know the position of the last token. If a
1403
- `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1404
- no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1405
- padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1406
- each row of the batch).
1407
- """,
1408
- PHI3_START_DOCSTRING,
1409
- )
1410
- # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Phi3, LLAMA->PHI3, self.transformer->self.model, transformer_outputs->model_outputs
1411
- class Phi3ForSequenceClassification(Phi3PreTrainedModel):
1412
- def __init__(self, config):
1413
- super().__init__(config)
1414
- self.num_labels = config.num_labels
1415
- self.model = Phi3Model(config)
1416
- self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1417
-
1418
- # Initialize weights and apply final processing
1419
- self.post_init()
1420
-
1421
- def get_input_embeddings(self):
1422
- return self.model.embed_tokens
1423
-
1424
- def set_input_embeddings(self, value):
1425
- self.model.embed_tokens = value
1426
-
1427
- @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1428
- def forward(
1429
- self,
1430
- input_ids: torch.LongTensor = None,
1431
- attention_mask: Optional[torch.Tensor] = None,
1432
- position_ids: Optional[torch.LongTensor] = None,
1433
- past_key_values: Optional[List[torch.FloatTensor]] = None,
1434
- inputs_embeds: Optional[torch.FloatTensor] = None,
1435
- labels: Optional[torch.LongTensor] = None,
1436
- use_cache: Optional[bool] = None,
1437
- output_attentions: Optional[bool] = None,
1438
- output_hidden_states: Optional[bool] = None,
1439
- return_dict: Optional[bool] = None,
1440
- ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1441
- r"""
1442
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1443
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1444
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1445
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1446
- """
1447
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1448
-
1449
- model_outputs = self.model(
1450
- input_ids,
1451
- attention_mask=attention_mask,
1452
- position_ids=position_ids,
1453
- past_key_values=past_key_values,
1454
- inputs_embeds=inputs_embeds,
1455
- use_cache=use_cache,
1456
- output_attentions=output_attentions,
1457
- output_hidden_states=output_hidden_states,
1458
- return_dict=return_dict,
1459
- )
1460
- hidden_states = model_outputs[0]
1461
- logits = self.score(hidden_states)
1462
-
1463
- if input_ids is not None:
1464
- batch_size = input_ids.shape[0]
1465
- else:
1466
- batch_size = inputs_embeds.shape[0]
1467
-
1468
- if self.config.pad_token_id is None and batch_size != 1:
1469
- raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1470
- if self.config.pad_token_id is None:
1471
- sequence_lengths = -1
1472
- else:
1473
- if input_ids is not None:
1474
- # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1475
- sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1476
- sequence_lengths = sequence_lengths % input_ids.shape[-1]
1477
- sequence_lengths = sequence_lengths.to(logits.device)
1478
- else:
1479
- sequence_lengths = -1
1480
-
1481
- pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1482
-
1483
- loss = None
1484
- if labels is not None:
1485
- labels = labels.to(logits.device)
1486
- if self.config.problem_type is None:
1487
- if self.num_labels == 1:
1488
- self.config.problem_type = "regression"
1489
- elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1490
- self.config.problem_type = "single_label_classification"
1491
- else:
1492
- self.config.problem_type = "multi_label_classification"
1493
-
1494
- if self.config.problem_type == "regression":
1495
- loss_fct = MSELoss()
1496
- if self.num_labels == 1:
1497
- loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1498
- else:
1499
- loss = loss_fct(pooled_logits, labels)
1500
- elif self.config.problem_type == "single_label_classification":
1501
- loss_fct = CrossEntropyLoss()
1502
- loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1503
- elif self.config.problem_type == "multi_label_classification":
1504
- loss_fct = BCEWithLogitsLoss()
1505
- loss = loss_fct(pooled_logits, labels)
1506
- if not return_dict:
1507
- output = (pooled_logits,) + model_outputs[1:]
1508
- return ((loss,) + output) if loss is not None else output
1509
-
1510
- return SequenceClassifierOutputWithPast(
1511
- loss=loss,
1512
- logits=pooled_logits,
1513
- past_key_values=model_outputs.past_key_values,
1514
- hidden_states=model_outputs.hidden_states,
1515
- attentions=model_outputs.attentions,
1516
- )
1517
-
1518
-
1519
- @add_start_docstrings(
1520
- """
1521
- [`Phi3Model`] with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
1522
- Named-Entity-Recognition (NER) tasks.
1523
- """,
1524
- PHI3_START_DOCSTRING,
1525
- )
1526
- # Copied from transformers.models.mpt.modeling_mpt.MptForTokenClassification with Mpt->Phi3,MPT->PHI3,self.transformer->self.model,transformer_outputs->model_outputs
1527
- class Phi3ForTokenClassification(Phi3PreTrainedModel):
1528
- def __init__(self, config: Phi3Config):
1529
- super().__init__(config)
1530
- self.num_labels = config.num_labels
1531
-
1532
- self.model = Phi3Model(config)
1533
- if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
1534
- classifier_dropout = config.classifier_dropout
1535
- elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
1536
- classifier_dropout = config.hidden_dropout
1537
- else:
1538
- classifier_dropout = 0.1
1539
- self.dropout = nn.Dropout(classifier_dropout)
1540
- self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1541
-
1542
- # Initialize weights and apply final processing
1543
- self.post_init()
1544
-
1545
- @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1546
- @add_code_sample_docstrings(
1547
- checkpoint=_CHECKPOINT_FOR_DOC,
1548
- output_type=TokenClassifierOutput,
1549
- config_class=_CONFIG_FOR_DOC,
1550
- )
1551
- def forward(
1552
- self,
1553
- input_ids: Optional[torch.LongTensor] = None,
1554
- past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
1555
- attention_mask: Optional[torch.Tensor] = None,
1556
- inputs_embeds: Optional[torch.Tensor] = None,
1557
- labels: Optional[torch.Tensor] = None,
1558
- use_cache: Optional[bool] = None,
1559
- output_attentions: Optional[bool] = None,
1560
- output_hidden_states: Optional[bool] = None,
1561
- return_dict: Optional[bool] = None,
1562
- **deprecated_arguments,
1563
- ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
1564
- r"""
1565
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1566
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1567
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1568
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1569
- """
1570
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1571
-
1572
- model_outputs = self.model(
1573
- input_ids,
1574
- past_key_values=past_key_values,
1575
- attention_mask=attention_mask,
1576
- inputs_embeds=inputs_embeds,
1577
- use_cache=use_cache,
1578
- output_attentions=output_attentions,
1579
- output_hidden_states=output_hidden_states,
1580
- return_dict=return_dict,
1581
- )
1582
-
1583
- hidden_states = model_outputs[0]
1584
- hidden_states = self.dropout(hidden_states)
1585
- logits = self.classifier(hidden_states)
1586
-
1587
- loss = None
1588
- if labels is not None:
1589
- # move labels to correct device to enable model parallelism
1590
- labels = labels.to(logits.device)
1591
- batch_size, seq_length = labels.shape
1592
- loss_fct = CrossEntropyLoss()
1593
- loss = loss_fct(
1594
- logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
1595
- )
1596
-
1597
- if not return_dict:
1598
- output = (logits,) + model_outputs[2:]
1599
- return ((loss,) + output) if loss is not None else output
1600
-
1601
- return TokenClassifierOutput(
1602
- loss=loss,
1603
- logits=logits,
1604
- hidden_states=model_outputs.hidden_states,
1605
- attentions=model_outputs.attentions,
1606
- )