File size: 7,053 Bytes
1f5a68d 4ccc0ea 1f5a68d 4ccc0ea 1f5a68d 4ccc0ea 1f5a68d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import os
import requests
import zipfile
import subprocess
import shutil
from huggingface_hub import snapshot_download
# Clone or update the llama.cpp repository with shallow cloning
def clone_or_update_llama_cpp():
print("Preparing...")
base_dir = os.path.dirname(os.path.abspath(__file__))
os.chdir(base_dir)
if not os.path.exists("llama.cpp"):
subprocess.run(["git", "clone", "--depth", "1", "https://github.com/ggerganov/llama.cpp"])
else:
os.chdir("llama.cpp")
subprocess.run(["git", "pull"])
os.chdir(base_dir)
print("The 'llama.cpp' repository is ready.")
# Cownload and extract the latest release of llama.cpp
def download_llama_release():
base_dir = os.path.dirname(os.path.abspath(__file__))
dl_dir = os.path.join(base_dir, "bin", "dl")
if not os.path.exists(dl_dir):
os.makedirs(dl_dir)
os.chdir(dl_dir)
latest_release_url = "https://github.com/ggerganov/llama.cpp/releases/latest"
response = requests.get(latest_release_url)
if response.status_code == 200:
latest_release_tag = response.url.split("/")[-1]
download_url = f"https://github.com/ggerganov/llama.cpp/releases/download/{latest_release_tag}/llama-{latest_release_tag}-bin-win-cuda-cu12.2.0-x64.zip"
response = requests.get(download_url)
if response.status_code == 200:
with open(f"llama-{latest_release_tag}-bin-win-cuda-cu12.2.0-x64.zip", "wb") as f:
f.write(response.content)
with zipfile.ZipFile(f"llama-{latest_release_tag}-bin-win-cuda-cu12.2.0-x64.zip", "r") as zip_ref:
zip_ref.extractall(os.path.join(base_dir, "bin"))
print("Downloading latest 'llama.cpp' prebuilt Windows binaries...")
print("Download and extraction completed successfully.")
return latest_release_tag
else:
print("Failed to download the release file.")
else:
print("Failed to fetch the latest release information.")
# Download and extract cudart if necessary
def download_cudart_if_necessary(latest_release_tag):
base_dir = os.path.dirname(os.path.abspath(__file__))
cudart_dl_dir = os.path.join(base_dir, "bin", "dl")
if not os.path.exists(cudart_dl_dir):
os.makedirs(cudart_dl_dir)
cudart_zip_file = os.path.join(cudart_dl_dir, "cudart-llama-bin-win-cu12.2.0-x64.zip")
cudart_extracted_files = ["cublas64_12.dll", "cublasLt64_12.dll", "cudart64_12.dll"]
# Check if all required files exist
if all(os.path.exists(os.path.join(base_dir, "bin", file)) for file in cudart_extracted_files):
print("Cuda resources already exist. Skipping download.")
else:
cudart_download_url = f"https://github.com/ggerganov/llama.cpp/releases/download/{latest_release_tag}/cudart-llama-bin-win-cu12.2.0-x64.zip"
response = requests.get(cudart_download_url)
if response.status_code == 200:
with open(cudart_zip_file, "wb") as f:
f.write(response.content)
with zipfile.ZipFile(cudart_zip_file, "r") as zip_ref:
zip_ref.extractall(os.path.join(base_dir, "bin"))
print("Preparing 'cuda' resources...")
print("Download and extraction of cudart completed successfully.")
else:
print("Failed to download the cudart release file.")
# Collect user input and download the specified model repository
def download_model_repo():
base_dir = os.path.dirname(os.path.abspath(__file__))
models_dir = os.path.join(base_dir, "models")
if not os.path.exists(models_dir):
os.makedirs(models_dir)
model_id = input("Enter the model ID to download (e.g., huggingface/transformers): ")
model_name = model_id.split("/")[-1]
model_dir = os.path.join(models_dir, model_name)
# Download the model repository if it doesn't exist
if not os.path.exists(model_dir):
revision = input("Enter the revision (branch, tag, or commit) to download (default: main): ") or "main"
print("Downloading model repository...")
snapshot_download(repo_id=model_id, local_dir=model_dir, revision=revision)
print("Model repository downloaded successfully.")
else:
print("Model already exists.")
# Convert the downloaded model to GGUF F16 format and generate imatrix.dat
convert_model_to_gguf_f16(base_dir, model_dir, model_name)
# Convert the downloaded model to GGUF F16 format
def convert_model_to_gguf_f16(base_dir, model_dir, model_name):
convert_script = os.path.join(base_dir, "llama.cpp", "convert.py")
gguf_dir = os.path.join(base_dir, "models", f"{model_name}-GGUF")
gguf_model_path = os.path.join(gguf_dir, f"{model_name}-F16.gguf")
if not os.path.exists(gguf_dir):
os.makedirs(gguf_dir)
# Execute the conversion command if F16 file doesn't exist
if not os.path.exists(gguf_model_path):
subprocess.run(["python", convert_script, model_dir, "--outfile", gguf_model_path, "--outtype", "f16"])
# Delete the original model directory
shutil.rmtree(model_dir)
print(f"Original model directory '{model_dir}' deleted.")
# Execute the imatrix command if imatrix.dat doesn't exist
imatrix_exe = os.path.join(base_dir, "bin", "imatrix.exe")
imatrix_output = os.path.join(gguf_dir, "imatrix.dat")
imatrix_txt = os.path.join(base_dir, "imatrix", "imatrix.txt")
if not os.path.exists(imatrix_output):
subprocess.run([imatrix_exe, "-m", gguf_model_path, "-f", imatrix_txt, "-ngl", "13"])
# Move the imatrix.dat file to the GGUF folder
shutil.move("imatrix.dat", gguf_dir)
print("imatrix.dat generated successfully.")
# Quantize the models
quantize_models(base_dir, model_name)
# Qantize models with different options
def quantize_models(base_dir, model_name):
gguf_dir = os.path.join(base_dir, "models", f"{model_name}-GGUF")
f16_gguf_path = os.path.join(gguf_dir, f"{model_name}-F16.gguf")
quantization_options = [
"Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M",
"Q5_K_S", "Q6_K", "Q8_0", "IQ3_M", "IQ3_S", "IQ3_XS", "IQ3_XXS"
]
for quant_option in quantization_options:
quantized_gguf_name = f"{model_name}-{quant_option}-imat.gguf"
quantized_gguf_path = os.path.join(gguf_dir, quantized_gguf_name)
quantize_command = os.path.join(base_dir, "bin", "quantize.exe")
imatrix_path = os.path.join(gguf_dir, "imatrix.dat")
subprocess.run([quantize_command, "--imatrix", imatrix_path,
f16_gguf_path, quantized_gguf_path, quant_option], cwd=gguf_dir)
print(f"Model quantized with {quant_option} option.")
# Main function - Steps
def main():
clone_or_update_llama_cpp()
latest_release_tag = download_llama_release()
download_cudart_if_necessary(latest_release_tag)
download_model_repo()
print("Finished preparing resources.")
if __name__ == "__main__":
main()
|