first attempt
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2-first-try.zip +3 -0
- ppo-LunarLander-v2-first-try/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-first-try/data +94 -0
- ppo-LunarLander-v2-first-try/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-first-try/policy.pth +3 -0
- ppo-LunarLander-v2-first-try/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-first-try/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: ppo
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 145.24 +/- 76.78
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **ppo** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **ppo** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc509660710>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc5096607a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc509660830>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc5096608c0>", "_build": "<function ActorCriticPolicy._build at 0x7fc509660950>", "forward": "<function ActorCriticPolicy.forward at 0x7fc5096609e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc509660a70>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc509660b00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc509660b90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc509660c20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc509660cb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc5096ae690>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651778580.1847556, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALO+tb0pdHi6ZEWHOyLLoTTHJoe7Aii2MwAAgD8AAIA/ZgxDPVJGiLvhhoC8RdWjvcmanLwqNIa+AACAPwAAgD/ar8I91fYJP9C4pbxbGnm+v8+2vZZq4jsAAAAAAAAAABrmzb0pF2s/FdPRvWDBvL4NTq29JnamOgAAAAAAAAAAZpFTPfYsQLrosKY6OjEdtiPTobcG4RO1AACAPwAAgD+m26K9CudEubzEOby+eQK2uuGvOiOrcjUAAIA/AACAP9o0wz3sUcW5HjwRuX1jPLSyYek6+dMnOAAAgD8AAIA/M+9JPFyDOrpAtes7RYL+NYpQ9LjTr+k0AACAPwAAgD96h0k+56yEPyX1rT7Fra++zKy4PsnKLj4AAAAAAAAAAMD61z3sidi5fgOLugsEjbVF9205FDWkOQAAgD8AAIA/mm7VPbbxXz8pYye8ArqEvqMnrD2mUDW9AAAAAAAAAAAteZ6+9tAHPT3oVTtUUty54dM+vnslgLoAAIA/AACAPwBAxjuPvki6cc+GvLmC57bBype7Pn5PNgAAgD8AAIA/mhV4vS4Ppj9WIz6+cqvPvmXtJL2S/Qo9AAAAAAAAAACNB4k9zRVxPrLbGz2Qsxa+qHlEvawKnT0AAAAAAAAAAOokhj4OQ6e8gOtKu0G9jznkFxa+G/x2OgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIls/yPLgbVUCUhpRSlIwBbJRN6AOMAXSUR0CEWK1XvH94dX2UKGgGaAloD0MIecpqup4FWECUhpRSlGgVTegDaBZHQIRa77EYO2B1fZQoaAZoCWgPQwiDNc6mIxJdQJSGlFKUaBVN6ANoFkdAhGuwLE1l5HV9lChoBmgJaA9DCGYxsfm4LldAlIaUUpRoFU3oA2gWR0CEbFBcAzYVdX2UKGgGaAloD0MI7x01JkS5Y0CUhpRSlGgVTegDaBZHQIRuNZJTVDt1fZQoaAZoCWgPQwg8LxUb8yxfQJSGlFKUaBVN6ANoFkdAhHcTvJA+p3V9lChoBmgJaA9DCGmM1lHV8FdAlIaUUpRoFU3oA2gWR0CEg49Ba9sadX2UKGgGaAloD0MITz+oixQiW0CUhpRSlGgVTegDaBZHQITGWoYNy5t1fZQoaAZoCWgPQwiHbYsyGyFbQJSGlFKUaBVN6ANoFkdAhMqYVRDTjXV9lChoBmgJaA9DCDnVWpiFRmJAlIaUUpRoFU3oA2gWR0CE0IbrC3w1dX2UKGgGaAloD0MI492RsVo4YkCUhpRSlGgVTegDaBZHQITtLF+/gzh1fZQoaAZoCWgPQwhNgczOoidjQJSGlFKUaBVNsQNoFkdAhPSzPBzmwXV9lChoBmgJaA9DCGkCRSxiK19AlIaUUpRoFU3oA2gWR0CFA1/EwWWQdX2UKGgGaAloD0MI81XysbsjXkCUhpRSlGgVTegDaBZHQIULrqGDcud1fZQoaAZoCWgPQwgDXJAtS7tjQJSGlFKUaBVN6ANoFkdAhQwvKdQO4HV9lChoBmgJaA9DCMx/SL99VWVAlIaUUpRoFU3FAmgWR0CFDqpCrtE5dX2UKGgGaAloD0MIXXAGfz/DakCUhpRSlGgVTb8BaBZHQIUSPtKIznB1fZQoaAZoCWgPQwh968N6oypjQJSGlFKUaBVN6ANoFkdAhRm4Tj/+9HV9lChoBmgJaA9DCJUoe0s5B1FAlIaUUpRoFU3oA2gWR0CFJKVKPGQ0dX2UKGgGaAloD0MIFcWrrG2SIMCUhpRSlGgVS+xoFkdAhSaM72criHV9lChoBmgJaA9DCINsWb4uqVdAlIaUUpRoFU3oA2gWR0CFJrDa4+bFdX2UKGgGaAloD0MIVtP1RNd3WECUhpRSlGgVTegDaBZHQIU0/NLUTct1fZQoaAZoCWgPQwg91/fhIE5cQJSGlFKUaBVN6ANoFkdAhTWIBJZntnV9lChoBmgJaA9DCP9BJEOOqTrAlIaUUpRoFUvkaBZHQIU4z9/BnBd1fZQoaAZoCWgPQwjCMGDJVaNeQJSGlFKUaBVN6ANoFkdAhT/50Syt3nV9lChoBmgJaA9DCAvw3eaNCFhAlIaUUpRoFU3oA2gWR0CFTHzEJjUedX2UKGgGaAloD0MILPLrh9irZkCUhpRSlGgVTegDaBZHQIVcedRR/Ex1fZQoaAZoCWgPQwhlxXB1AGBbQJSGlFKUaBVN6ANoFkdAhZs7ZFocrHV9lChoBmgJaA9DCHglyXN9vwNAlIaUUpRoFU04AWgWR0CFmz4sVclgdX2UKGgGaAloD0MImGw82GLIVUCUhpRSlGgVTegDaBZHQIW3OcawUxp1fZQoaAZoCWgPQwg/qmG/J/BaQJSGlFKUaBVN6ANoFkdAhb5v3SKFZnV9lChoBmgJaA9DCIT0FDnEoWBAlIaUUpRoFU3oA2gWR0CF1wfHxSYPdX2UKGgGaAloD0MIjkC8rl91YkCUhpRSlGgVTegDaBZHQIXXmw/xDst1fZQoaAZoCWgPQwjX9+EgIcRhQJSGlFKUaBVN6ANoFkdAhdo1K5Cng3V9lChoBmgJaA9DCOhLb38uqFZAlIaUUpRoFU3oA2gWR0CF3fSx7iQ1dX2UKGgGaAloD0MI2+BE9GtDNMCUhpRSlGgVTQ4BaBZHQIXkHcgyM1l1fZQoaAZoCWgPQwgEyxEykGpZQJSGlFKUaBVN6ANoFkdAhfGd2ovSMXV9lChoBmgJaA9DCCsWvyksSGFAlIaUUpRoFU3oA2gWR0CF85RNyo4udX2UKGgGaAloD0MI1XjpJjFSYUCUhpRSlGgVTegDaBZHQIXzu+9Jz1d1fZQoaAZoCWgPQwijBz4GK7hcQJSGlFKUaBVN6ANoFkdAhgN89W6shnV9lChoBmgJaA9DCKIIqdvZbUPAlIaUUpRoFUvTaBZHQIYD8zsQd0d1fZQoaAZoCWgPQwjja88sibRlQJSGlFKUaBVN6ANoFkdAhgQYh+vyLHV9lChoBmgJaA9DCCbl7nN8pF5AlIaUUpRoFU3oA2gWR0CGD4nQY1pCdX2UKGgGaAloD0MIPrMkQE3AYkCUhpRSlGgVTegDaBZHQIYdD6Fdszl1fZQoaAZoCWgPQwjJIHcRps5DwJSGlFKUaBVNQAFoFkdAhiM73oLXtnV9lChoBmgJaA9DCGWmtP6WtE1AlIaUUpRoFU3oA2gWR0CGLQWkadc0dX2UKGgGaAloD0MIs14M5USkYECUhpRSlGgVTegDaBZHQIZr8yN4qw11fZQoaAZoCWgPQwiHo6t0d+tZQJSGlFKUaBVN6ANoFkdAhmv7E5yU93V9lChoBmgJaA9DCHCYaJCCDmJAlIaUUpRoFU3oA2gWR0CGjuE/0NBodX2UKGgGaAloD0MIJSAm4ULtW0CUhpRSlGgVTegDaBZHQIapV6eGwid1fZQoaAZoCWgPQwglkBK7tppbQJSGlFKUaBVN6ANoFkdAhqne+Eh7mnV9lChoBmgJaA9DCFInoImwflpAlIaUUpRoFU3oA2gWR0CGrKK3NLUTdX2UKGgGaAloD0MIlC79S1K9XkCUhpRSlGgVTegDaBZHQIawv/HYHxB1fZQoaAZoCWgPQwg5mE2AYQllQJSGlFKUaBVN6ANoFkdAhsVbTDwYtXV9lChoBmgJaA9DCNtq1hnfamJAlIaUUpRoFU3oA2gWR0CGx5fKp1ifdX2UKGgGaAloD0MIJbIPsqypYUCUhpRSlGgVTegDaBZHQIbZFDneSB91fZQoaAZoCWgPQwg4EmiwqdVPQJSGlFKUaBVN6ANoFkdAhtmWilBQenV9lChoBmgJaA9DCMwNhjosgWBAlIaUUpRoFU3oA2gWR0CG2cL3K0UodX2UKGgGaAloD0MIpaMczCavVUCUhpRSlGgVTegDaBZHQIbk5Ge+VTt1fZQoaAZoCWgPQwi2Z5YEKH9kQJSGlFKUaBVN6ANoFkdAhvGggPmPo3V9lChoBmgJaA9DCETBjClY/V9AlIaUUpRoFU3oA2gWR0CG94FlCkXUdX2UKGgGaAloD0MILsvXZXinYkCUhpRSlGgVTegDaBZHQIcAzSiM5wR1fZQoaAZoCWgPQwg5K6Im+gQjQJSGlFKUaBVNJwFoFkdAhwRaNuLrHHV9lChoBmgJaA9DCE7xuKiWqWFAlIaUUpRoFU3oA2gWR0CHQI4gieNDdX2UKGgGaAloD0MIR+S7lLogTkCUhpRSlGgVTegDaBZHQIdAna+N96V1fZQoaAZoCWgPQwhZNnNIamtjQJSGlFKUaBVNEwNoFkdAh13o0ygwoXV9lChoBmgJaA9DCCi5wyYyBmVAlIaUUpRoFU3oA2gWR0CHYl8qnWJ8dX2UKGgGaAloD0MImpguxOo1XECUhpRSlGgVTegDaBZHQId5WeQMhHN1fZQoaAZoCWgPQwjByTZwB+VkQJSGlFKUaBVN6ANoFkdAh3nkSElE7XV9lChoBmgJaA9DCHqM8szLkV9AlIaUUpRoFU3oA2gWR0CHfFO45Lh8dX2UKGgGaAloD0MIk+NO6eCZYECUhpRSlGgVTegDaBZHQIeUe87IT5B1fZQoaAZoCWgPQwh3FOeoowRlQJSGlFKUaBVN6ANoFkdAh5aqp97Wu3V9lChoBmgJaA9DCCaqtwa21VvAlIaUUpRoFU2IAmgWR0CHpub1AZ88dX2UKGgGaAloD0MI9P4/TpjhXUCUhpRSlGgVTegDaBZHQIeogQ176YV1fZQoaAZoCWgPQwgdylAVU6xeQJSGlFKUaBVN6ANoFkdAh6j+jua4MHV9lChoBmgJaA9DCLzK2qZ4TDlAlIaUUpRoFUu+aBZHQIe13bZezD51fZQoaAZoCWgPQwgVG/M64uFbQJSGlFKUaBVN6ANoFkdAh7Y1+I/JNnV9lChoBmgJaA9DCPuSjQdbo1xAlIaUUpRoFU3oA2gWR0CHxGLLIPsidX2UKGgGaAloD0MIBkg0gSK1WUCUhpRSlGgVTegDaBZHQIfKvY150KZ1fZQoaAZoCWgPQwhxGw3gLSZfQJSGlFKUaBVN6ANoFkdAh9T9u5z5oHV9lChoBmgJaA9DCJCjObLyRV5AlIaUUpRoFU3oA2gWR0CH2Kt0V8CxdX2UKGgGaAloD0MIMNY3MLnZRMCUhpRSlGgVTTwBaBZHQIfbYLJCBwx1fZQoaAZoCWgPQwgQH9jxXwAcwJSGlFKUaBVL+2gWR0CH3e4y44IbdX2UKGgGaAloD0MIsCDNWDQiVUCUhpRSlGgVTegDaBZHQIffZq7Ackt1fZQoaAZoCWgPQwgQ7PgvELQYQJSGlFKUaBVL3WgWR0CIMBfBN21VdX2UKGgGaAloD0MItHbbhebzUECUhpRSlGgVTegDaBZHQIgy+GEf1Yh1fZQoaAZoCWgPQwg7b2OzIzRdQJSGlFKUaBVN6ANoFkdAiDdDHGS6lXV9lChoBmgJaA9DCGxblNkg8w9AlIaUUpRoFU3oA2gWR0CITRtTkyULdX2UKGgGaAloD0MIxCPx8nQNUkCUhpRSlGgVTegDaBZHQIhNmNm16Vt1fZQoaAZoCWgPQwioqtBALFhUQJSGlFKUaBVN6ANoFkdAiFACwr1/UnV9lChoBmgJaA9DCFzjM9k/dWJAlIaUUpRoFU3oA2gWR0CIZubT+ee4dX2UKGgGaAloD0MI39416EsFRkCUhpRSlGgVTegDaBZHQIh5fCMxXXB1fZQoaAZoCWgPQwg9ZMqHICZiQJSGlFKUaBVN6ANoFkdAiHt9Lg4wRHV9lChoBmgJaA9DCH8SnzvBpiJAlIaUUpRoFU3oA2gWR0CIiHSk0rLAdX2UKGgGaAloD0MILXjRV5AXXkCUhpRSlGgVTegDaBZHQIiW4EQoTf11fZQoaAZoCWgPQwhTdY9srshUQJSGlFKUaBVN6ANoFkdAiJ0ilBQem3V9lChoBmgJaA9DCPXzpiIVajlAlIaUUpRoFU3oA2gWR0CIp1RsuWa+dX2UKGgGaAloD0MIhAzk2eVQWUCUhpRSlGgVTegDaBZHQIityGQCCBh1fZQoaAZoCWgPQwjJj/gVa4ViQJSGlFKUaBVN6ANoFkdAiLCAwPAfuHV9lChoBmgJaA9DCFFNSdZhNGBAlIaUUpRoFU3oA2gWR0CIshCVrylOdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2-first-try.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84bd95e0ca1cabebb0cbf23bde40a108fe8f2e1e03fb95276f9e1ca98365e566
|
3 |
+
size 144040
|
ppo-LunarLander-v2-first-try/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2-first-try/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fc509660710>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc5096607a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc509660830>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc5096608c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fc509660950>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fc5096609e0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc509660a70>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fc509660b00>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc509660b90>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc509660c20>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc509660cb0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fc5096ae690>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651778580.1847556,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALO+tb0pdHi6ZEWHOyLLoTTHJoe7Aii2MwAAgD8AAIA/ZgxDPVJGiLvhhoC8RdWjvcmanLwqNIa+AACAPwAAgD/ar8I91fYJP9C4pbxbGnm+v8+2vZZq4jsAAAAAAAAAABrmzb0pF2s/FdPRvWDBvL4NTq29JnamOgAAAAAAAAAAZpFTPfYsQLrosKY6OjEdtiPTobcG4RO1AACAPwAAgD+m26K9CudEubzEOby+eQK2uuGvOiOrcjUAAIA/AACAP9o0wz3sUcW5HjwRuX1jPLSyYek6+dMnOAAAgD8AAIA/M+9JPFyDOrpAtes7RYL+NYpQ9LjTr+k0AACAPwAAgD96h0k+56yEPyX1rT7Fra++zKy4PsnKLj4AAAAAAAAAAMD61z3sidi5fgOLugsEjbVF9205FDWkOQAAgD8AAIA/mm7VPbbxXz8pYye8ArqEvqMnrD2mUDW9AAAAAAAAAAAteZ6+9tAHPT3oVTtUUty54dM+vnslgLoAAIA/AACAPwBAxjuPvki6cc+GvLmC57bBype7Pn5PNgAAgD8AAIA/mhV4vS4Ppj9WIz6+cqvPvmXtJL2S/Qo9AAAAAAAAAACNB4k9zRVxPrLbGz2Qsxa+qHlEvawKnT0AAAAAAAAAAOokhj4OQ6e8gOtKu0G9jznkFxa+G/x2OgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIls/yPLgbVUCUhpRSlIwBbJRN6AOMAXSUR0CEWK1XvH94dX2UKGgGaAloD0MIecpqup4FWECUhpRSlGgVTegDaBZHQIRa77EYO2B1fZQoaAZoCWgPQwiDNc6mIxJdQJSGlFKUaBVN6ANoFkdAhGuwLE1l5HV9lChoBmgJaA9DCGYxsfm4LldAlIaUUpRoFU3oA2gWR0CEbFBcAzYVdX2UKGgGaAloD0MI7x01JkS5Y0CUhpRSlGgVTegDaBZHQIRuNZJTVDt1fZQoaAZoCWgPQwg8LxUb8yxfQJSGlFKUaBVN6ANoFkdAhHcTvJA+p3V9lChoBmgJaA9DCGmM1lHV8FdAlIaUUpRoFU3oA2gWR0CEg49Ba9sadX2UKGgGaAloD0MITz+oixQiW0CUhpRSlGgVTegDaBZHQITGWoYNy5t1fZQoaAZoCWgPQwiHbYsyGyFbQJSGlFKUaBVN6ANoFkdAhMqYVRDTjXV9lChoBmgJaA9DCDnVWpiFRmJAlIaUUpRoFU3oA2gWR0CE0IbrC3w1dX2UKGgGaAloD0MI492RsVo4YkCUhpRSlGgVTegDaBZHQITtLF+/gzh1fZQoaAZoCWgPQwhNgczOoidjQJSGlFKUaBVNsQNoFkdAhPSzPBzmwXV9lChoBmgJaA9DCGkCRSxiK19AlIaUUpRoFU3oA2gWR0CFA1/EwWWQdX2UKGgGaAloD0MI81XysbsjXkCUhpRSlGgVTegDaBZHQIULrqGDcud1fZQoaAZoCWgPQwgDXJAtS7tjQJSGlFKUaBVN6ANoFkdAhQwvKdQO4HV9lChoBmgJaA9DCMx/SL99VWVAlIaUUpRoFU3FAmgWR0CFDqpCrtE5dX2UKGgGaAloD0MIXXAGfz/DakCUhpRSlGgVTb8BaBZHQIUSPtKIznB1fZQoaAZoCWgPQwh968N6oypjQJSGlFKUaBVN6ANoFkdAhRm4Tj/+9HV9lChoBmgJaA9DCJUoe0s5B1FAlIaUUpRoFU3oA2gWR0CFJKVKPGQ0dX2UKGgGaAloD0MIFcWrrG2SIMCUhpRSlGgVS+xoFkdAhSaM72criHV9lChoBmgJaA9DCINsWb4uqVdAlIaUUpRoFU3oA2gWR0CFJrDa4+bFdX2UKGgGaAloD0MIVtP1RNd3WECUhpRSlGgVTegDaBZHQIU0/NLUTct1fZQoaAZoCWgPQwg91/fhIE5cQJSGlFKUaBVN6ANoFkdAhTWIBJZntnV9lChoBmgJaA9DCP9BJEOOqTrAlIaUUpRoFUvkaBZHQIU4z9/BnBd1fZQoaAZoCWgPQwjCMGDJVaNeQJSGlFKUaBVN6ANoFkdAhT/50Syt3nV9lChoBmgJaA9DCAvw3eaNCFhAlIaUUpRoFU3oA2gWR0CFTHzEJjUedX2UKGgGaAloD0MILPLrh9irZkCUhpRSlGgVTegDaBZHQIVcedRR/Ex1fZQoaAZoCWgPQwhlxXB1AGBbQJSGlFKUaBVN6ANoFkdAhZs7ZFocrHV9lChoBmgJaA9DCHglyXN9vwNAlIaUUpRoFU04AWgWR0CFmz4sVclgdX2UKGgGaAloD0MImGw82GLIVUCUhpRSlGgVTegDaBZHQIW3OcawUxp1fZQoaAZoCWgPQwg/qmG/J/BaQJSGlFKUaBVN6ANoFkdAhb5v3SKFZnV9lChoBmgJaA9DCIT0FDnEoWBAlIaUUpRoFU3oA2gWR0CF1wfHxSYPdX2UKGgGaAloD0MIjkC8rl91YkCUhpRSlGgVTegDaBZHQIXXmw/xDst1fZQoaAZoCWgPQwjX9+EgIcRhQJSGlFKUaBVN6ANoFkdAhdo1K5Cng3V9lChoBmgJaA9DCOhLb38uqFZAlIaUUpRoFU3oA2gWR0CF3fSx7iQ1dX2UKGgGaAloD0MI2+BE9GtDNMCUhpRSlGgVTQ4BaBZHQIXkHcgyM1l1fZQoaAZoCWgPQwgEyxEykGpZQJSGlFKUaBVN6ANoFkdAhfGd2ovSMXV9lChoBmgJaA9DCCsWvyksSGFAlIaUUpRoFU3oA2gWR0CF85RNyo4udX2UKGgGaAloD0MI1XjpJjFSYUCUhpRSlGgVTegDaBZHQIXzu+9Jz1d1fZQoaAZoCWgPQwijBz4GK7hcQJSGlFKUaBVN6ANoFkdAhgN89W6shnV9lChoBmgJaA9DCKIIqdvZbUPAlIaUUpRoFUvTaBZHQIYD8zsQd0d1fZQoaAZoCWgPQwjja88sibRlQJSGlFKUaBVN6ANoFkdAhgQYh+vyLHV9lChoBmgJaA9DCCbl7nN8pF5AlIaUUpRoFU3oA2gWR0CGD4nQY1pCdX2UKGgGaAloD0MIPrMkQE3AYkCUhpRSlGgVTegDaBZHQIYdD6Fdszl1fZQoaAZoCWgPQwjJIHcRps5DwJSGlFKUaBVNQAFoFkdAhiM73oLXtnV9lChoBmgJaA9DCGWmtP6WtE1AlIaUUpRoFU3oA2gWR0CGLQWkadc0dX2UKGgGaAloD0MIs14M5USkYECUhpRSlGgVTegDaBZHQIZr8yN4qw11fZQoaAZoCWgPQwiHo6t0d+tZQJSGlFKUaBVN6ANoFkdAhmv7E5yU93V9lChoBmgJaA9DCHCYaJCCDmJAlIaUUpRoFU3oA2gWR0CGjuE/0NBodX2UKGgGaAloD0MIJSAm4ULtW0CUhpRSlGgVTegDaBZHQIapV6eGwid1fZQoaAZoCWgPQwglkBK7tppbQJSGlFKUaBVN6ANoFkdAhqne+Eh7mnV9lChoBmgJaA9DCFInoImwflpAlIaUUpRoFU3oA2gWR0CGrKK3NLUTdX2UKGgGaAloD0MIlC79S1K9XkCUhpRSlGgVTegDaBZHQIawv/HYHxB1fZQoaAZoCWgPQwg5mE2AYQllQJSGlFKUaBVN6ANoFkdAhsVbTDwYtXV9lChoBmgJaA9DCNtq1hnfamJAlIaUUpRoFU3oA2gWR0CGx5fKp1ifdX2UKGgGaAloD0MIJbIPsqypYUCUhpRSlGgVTegDaBZHQIbZFDneSB91fZQoaAZoCWgPQwg4EmiwqdVPQJSGlFKUaBVN6ANoFkdAhtmWilBQenV9lChoBmgJaA9DCMwNhjosgWBAlIaUUpRoFU3oA2gWR0CG2cL3K0UodX2UKGgGaAloD0MIpaMczCavVUCUhpRSlGgVTegDaBZHQIbk5Ge+VTt1fZQoaAZoCWgPQwi2Z5YEKH9kQJSGlFKUaBVN6ANoFkdAhvGggPmPo3V9lChoBmgJaA9DCETBjClY/V9AlIaUUpRoFU3oA2gWR0CG94FlCkXUdX2UKGgGaAloD0MILsvXZXinYkCUhpRSlGgVTegDaBZHQIcAzSiM5wR1fZQoaAZoCWgPQwg5K6Im+gQjQJSGlFKUaBVNJwFoFkdAhwRaNuLrHHV9lChoBmgJaA9DCE7xuKiWqWFAlIaUUpRoFU3oA2gWR0CHQI4gieNDdX2UKGgGaAloD0MIR+S7lLogTkCUhpRSlGgVTegDaBZHQIdAna+N96V1fZQoaAZoCWgPQwhZNnNIamtjQJSGlFKUaBVNEwNoFkdAh13o0ygwoXV9lChoBmgJaA9DCCi5wyYyBmVAlIaUUpRoFU3oA2gWR0CHYl8qnWJ8dX2UKGgGaAloD0MImpguxOo1XECUhpRSlGgVTegDaBZHQId5WeQMhHN1fZQoaAZoCWgPQwjByTZwB+VkQJSGlFKUaBVN6ANoFkdAh3nkSElE7XV9lChoBmgJaA9DCHqM8szLkV9AlIaUUpRoFU3oA2gWR0CHfFO45Lh8dX2UKGgGaAloD0MIk+NO6eCZYECUhpRSlGgVTegDaBZHQIeUe87IT5B1fZQoaAZoCWgPQwh3FOeoowRlQJSGlFKUaBVN6ANoFkdAh5aqp97Wu3V9lChoBmgJaA9DCCaqtwa21VvAlIaUUpRoFU2IAmgWR0CHpub1AZ88dX2UKGgGaAloD0MI9P4/TpjhXUCUhpRSlGgVTegDaBZHQIeogQ176YV1fZQoaAZoCWgPQwgdylAVU6xeQJSGlFKUaBVN6ANoFkdAh6j+jua4MHV9lChoBmgJaA9DCLzK2qZ4TDlAlIaUUpRoFUu+aBZHQIe13bZezD51fZQoaAZoCWgPQwgVG/M64uFbQJSGlFKUaBVN6ANoFkdAh7Y1+I/JNnV9lChoBmgJaA9DCPuSjQdbo1xAlIaUUpRoFU3oA2gWR0CHxGLLIPsidX2UKGgGaAloD0MIBkg0gSK1WUCUhpRSlGgVTegDaBZHQIfKvY150KZ1fZQoaAZoCWgPQwhxGw3gLSZfQJSGlFKUaBVN6ANoFkdAh9T9u5z5oHV9lChoBmgJaA9DCJCjObLyRV5AlIaUUpRoFU3oA2gWR0CH2Kt0V8CxdX2UKGgGaAloD0MIMNY3MLnZRMCUhpRSlGgVTTwBaBZHQIfbYLJCBwx1fZQoaAZoCWgPQwgQH9jxXwAcwJSGlFKUaBVL+2gWR0CH3e4y44IbdX2UKGgGaAloD0MIsCDNWDQiVUCUhpRSlGgVTegDaBZHQIffZq7Ackt1fZQoaAZoCWgPQwgQ7PgvELQYQJSGlFKUaBVL3WgWR0CIMBfBN21VdX2UKGgGaAloD0MItHbbhebzUECUhpRSlGgVTegDaBZHQIgy+GEf1Yh1fZQoaAZoCWgPQwg7b2OzIzRdQJSGlFKUaBVN6ANoFkdAiDdDHGS6lXV9lChoBmgJaA9DCGxblNkg8w9AlIaUUpRoFU3oA2gWR0CITRtTkyULdX2UKGgGaAloD0MIxCPx8nQNUkCUhpRSlGgVTegDaBZHQIhNmNm16Vt1fZQoaAZoCWgPQwioqtBALFhUQJSGlFKUaBVN6ANoFkdAiFACwr1/UnV9lChoBmgJaA9DCFzjM9k/dWJAlIaUUpRoFU3oA2gWR0CIZubT+ee4dX2UKGgGaAloD0MI39416EsFRkCUhpRSlGgVTegDaBZHQIh5fCMxXXB1fZQoaAZoCWgPQwg9ZMqHICZiQJSGlFKUaBVN6ANoFkdAiHt9Lg4wRHV9lChoBmgJaA9DCH8SnzvBpiJAlIaUUpRoFU3oA2gWR0CIiHSk0rLAdX2UKGgGaAloD0MILXjRV5AXXkCUhpRSlGgVTegDaBZHQIiW4EQoTf11fZQoaAZoCWgPQwhTdY9srshUQJSGlFKUaBVN6ANoFkdAiJ0ilBQem3V9lChoBmgJaA9DCPXzpiIVajlAlIaUUpRoFU3oA2gWR0CIp1RsuWa+dX2UKGgGaAloD0MIhAzk2eVQWUCUhpRSlGgVTegDaBZHQIityGQCCBh1fZQoaAZoCWgPQwjJj/gVa4ViQJSGlFKUaBVN6ANoFkdAiLCAwPAfuHV9lChoBmgJaA9DCFFNSdZhNGBAlIaUUpRoFU3oA2gWR0CIshCVrylOdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2-first-try/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da4d9c4704e0065b6d0416d9254b4692bb5e3e183be44770cc8c0c221574a212
|
3 |
+
size 84829
|
ppo-LunarLander-v2-first-try/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8f1bce3ffecf9256b2ccb36f6336f57f07b3392852aaa6baf57396674a4316e
|
3 |
+
size 43201
|
ppo-LunarLander-v2-first-try/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2-first-try/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:35a857a486363a6fce0e5017358c6ae9c11db53a049b9765da5277341cfac486
|
3 |
+
size 221497
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 145.2421068094678, "std_reward": 76.77731839961875, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T19:45:07.218233"}
|