File size: 2,176 Bytes
71d076b
 
 
 
 
 
ccdf78a
 
 
71d076b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccdf78a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
---
license: mit
language:
- en
base_model:
- NousResearch/Hermes-3-Llama-3.1-8B
pipeline_tag: text-generation
tags:
- text-generation-inference
---

## Inf

```py
!git clone https://github.com/huggingface/transformers.git
%cd transformers
!git checkout <commit_id_for_4.47.0.dev0>
!pip install .
!pip install -q accelerate==0.34.2 bitsandbytes==0.44.1 peft==0.13.1
```
#### Importing libs

```py
import os
import torch
from datasets import load_dataset
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    pipeline,
    logging,
)
```

#### Bits&Bytes Config

```py
use_4bit = True

# Compute dtype for 4-bit base models
bnb_4bit_compute_dtype = "float16"

# Quantization type (fp4 or nf4)
compute_dtype = getattr(torch, bnb_4bit_compute_dtype)

use_nested_quant = False

bnb_4bit_quant_type = "nf4"
bnb_config = BitsAndBytesConfig(
    load_in_4bit=use_4bit,
    bnb_4bit_quant_type=bnb_4bit_quant_type,
    bnb_4bit_compute_dtype=compute_dtype,
    bnb_4bit_use_double_quant=use_nested_quant,
)
```
#### Loading Model

```py
# Load base model
model_name = 'Ahanaas/HermesWithYou_V2'
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    quantization_config=bnb_config,
    device_map=0
)
```

#### Loading Tokenizer
```py
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
```

# Predictions

```py
# Run text generation pipeline with our next model
system_prompt = ''''''
prompt = ''''''

pipe = pipeline(
    task="text-generation", 
    model=model, 
    tokenizer=tokenizer, 
    max_new_tokens=128,  # Increase this to allow for longer outputs
    temperature=0.5,  # Encourages more varied outputs
    top_k=50,  # Limits to the top 50 tokens
    do_sample=True,  # Enables sampling
    return_full_text=True,
)

result = pipe(f"<|im_start|>system\n {system_prompt}\n<|im_end|>\n<|im_start|>user\n{prompt}\n<|im_end|>\n<|im_start|>assistant\n")
# print(result[0]['generated_text'])
generated_text = result[0]['generated_text']

# Print the extracted response text
print(generated_text)
```