--- library_name: transformers license: apache-2.0 base_model: arbml/whisper-tiny-ar tags: - generated_from_trainer datasets: - speech_commands metrics: - accuracy model-index: - name: whisper-tiny-ar-ft-kws-speech-commands results: - task: name: Audio Classification type: audio-classification dataset: name: Speech Commands type: speech_commands metrics: - name: Accuracy type: accuracy value: 0.5204081632653061 --- # whisper-tiny-ar-ft-kws-speech-commands This model is a fine-tuned version of [arbml/whisper-tiny-ar](https://huggingface.co/arbml/whisper-tiny-ar) on the Speech Commands dataset. It achieves the following results on the evaluation set: - Loss: 1.8423 - Accuracy: 0.5204 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.6826 | 1.0 | 1325 | 0.7084 | 0.4966 | | 0.7052 | 2.0 | 2650 | 0.6965 | 0.5 | | 0.7409 | 3.0 | 3975 | 0.6876 | 0.5510 | | 0.7077 | 4.0 | 5300 | 0.7214 | 0.5170 | | 0.7988 | 5.0 | 6625 | 0.7523 | 0.4898 | | 0.5818 | 6.0 | 7950 | 0.8118 | 0.5510 | | 0.7722 | 7.0 | 9275 | 0.9102 | 0.5306 | | 1.4165 | 8.0 | 10600 | 1.6832 | 0.5 | | 0.7113 | 9.0 | 11925 | 1.6268 | 0.5340 | | 0.2578 | 10.0 | 13250 | 1.8423 | 0.5204 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0