File size: 3,030 Bytes
c8714ea eafcbce c8714ea eafcbce c8714ea db1a727 8b8dd27 db1a727 eafcbce f85ddba eafcbce a102156 95acb72 a102156 eafcbce a102156 eafcbce c9f8e17 c8714ea eafcbce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
base_model: unsloth/meta-llama-3.1-8b-bnb-4bit
language:
- en
- ar
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
datasets:
- AhmedBou/Arabic_instruction_dataset_for_llm_ft
---
A suitable name for this section could be:
# Model Description
This model is fine-tuned from LLama 3.1 8B, enhanced for improved capability in the Arabic language.
It was fine-tuned on 10,000 samples using Alpaca prompt instructions.
Please refer to this repository when using the model.
## To perform inference using these LoRA adapters, please use the following code:
````Python
# Installs Unsloth, Xformers (Flash Attention) and all other packages!
!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
!pip install --no-deps "xformers<0.0.27" "trl<0.9.0" peft accelerate bitsandbytes
````
````Python
from unsloth import FastLanguageModel
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "AhmedBou/Arabic-Meta-Llama-3.1-8B_LoRA", # YOUR MODEL YOU USED FOR TRAINING
max_seq_length = 2048,
dtype = None,
load_in_4bit = True,
)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{}
### Input:
{}
### Response:
{}"""
inputs = tokenizer(
[
alpaca_prompt.format(
"قم بصياغة الجملة الإنجليزية التالية باللغة العربية.", # instruction
"We hope that the last cases will soon be resolved through the mechanisms established for this purpose.", # input
"", # output - leave this blank for generation!
)
], return_tensors = "pt").to("cuda")
from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer)
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)
````
````Markdown
The Outout is:
<|begin_of_text|>Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
قم بصياغة الجملة الإنجليزية التالية باللغة العربية.
### Input:
We hope that the last cases will soon be resolved through the mechanisms established for this purpose.
### Response:
وأملنا في أن يكون هناك حل سريع للمواد الأخيرة من خلال الآليات المحددة لهذا الغرض.<|end_of_text|>
````
# Uploaded model
- **Developed by:** AhmedBou
- **License:** apache-2.0
- **Finetuned from model :** unsloth/meta-llama-3.1-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |