AhmedSSoliman commited on
Commit
57f3560
·
verified ·
1 Parent(s): 455745e

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,386 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: distilbert/distilroberta-base
3
+ library_name: sentence-transformers
4
+ pipeline_tag: sentence-similarity
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:50881
11
+ - loss:TripletLoss
12
+ widget:
13
+ - source_sentence: How can we reduce fatty thighs?
14
+ sentences:
15
+ - Is running beneficial for burning thigh and hips fat?
16
+ - Do mosquitoes get trapped in spider webs?
17
+ - How can I reduce thigh fat?
18
+ - source_sentence: What does Balaji Vishwanathan think about the ban of ₹500 and ₹1000
19
+ currency notes in India?
20
+ sentences:
21
+ - What are your views on demonetization of ₹500 & ₹1000 notes in India?
22
+ - What is your view on Meenakshi Lekhi, a MP of BJP, suggesting that demonetization
23
+ will hurt the common people?
24
+ - What are some good horror movies?
25
+ - source_sentence: What are your New Years resolutions for 2017?
26
+ sentences:
27
+ - What are some meaningful new year resolutions for 2017?
28
+ - How close are we to world war?
29
+ - What are your New Year's resolutions for 2016?
30
+ - source_sentence: Which will be the best day of your life?
31
+ sentences:
32
+ - Can you describe the best moment or the best day in your life?
33
+ - How was your day? What did you do today?
34
+ - Is it possible to travel time with real life?
35
+ - source_sentence: What is the best way to learn to play piano?
36
+ sentences:
37
+ - How can I learn to play the piano/synthesizer?
38
+ - What are the facilities to an IES officer?
39
+ - Can I easily learn a piano at a later point if I start learning music with a keyboard
40
+ initially?
41
+ ---
42
+
43
+ # SentenceTransformer based on distilbert/distilroberta-base
44
+
45
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
46
+
47
+ ## Model Details
48
+
49
+ ### Model Description
50
+ - **Model Type:** Sentence Transformer
51
+ - **Base model:** [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) <!-- at revision fb53ab8802853c8e4fbdbcd0529f21fc6f459b2b -->
52
+ - **Maximum Sequence Length:** 512 tokens
53
+ - **Output Dimensionality:** 768 tokens
54
+ - **Similarity Function:** Cosine Similarity
55
+ <!-- - **Training Dataset:** Unknown -->
56
+ <!-- - **Language:** Unknown -->
57
+ <!-- - **License:** Unknown -->
58
+
59
+ ### Model Sources
60
+
61
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
62
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
63
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
64
+
65
+ ### Full Model Architecture
66
+
67
+ ```
68
+ SentenceTransformer(
69
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
70
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
71
+ )
72
+ ```
73
+
74
+ ## Usage
75
+
76
+ ### Direct Usage (Sentence Transformers)
77
+
78
+ First install the Sentence Transformers library:
79
+
80
+ ```bash
81
+ pip install -U sentence-transformers
82
+ ```
83
+
84
+ Then you can load this model and run inference.
85
+ ```python
86
+ from sentence_transformers import SentenceTransformer
87
+
88
+ # Download from the 🤗 Hub
89
+ model = SentenceTransformer("AhmedSSoliman/distilroberta-base-sentence-transformer")
90
+ # Run inference
91
+ sentences = [
92
+ 'What is the best way to learn to play piano?',
93
+ 'How can I learn to play the piano/synthesizer?',
94
+ 'Can I easily learn a piano at a later point if I start learning music with a keyboard initially?',
95
+ ]
96
+ embeddings = model.encode(sentences)
97
+ print(embeddings.shape)
98
+ # [3, 768]
99
+
100
+ # Get the similarity scores for the embeddings
101
+ similarities = model.similarity(embeddings, embeddings)
102
+ print(similarities.shape)
103
+ # [3, 3]
104
+ ```
105
+
106
+ <!--
107
+ ### Direct Usage (Transformers)
108
+
109
+ <details><summary>Click to see the direct usage in Transformers</summary>
110
+
111
+ </details>
112
+ -->
113
+
114
+ <!--
115
+ ### Downstream Usage (Sentence Transformers)
116
+
117
+ You can finetune this model on your own dataset.
118
+
119
+ <details><summary>Click to expand</summary>
120
+
121
+ </details>
122
+ -->
123
+
124
+ <!--
125
+ ### Out-of-Scope Use
126
+
127
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
128
+ -->
129
+
130
+ <!--
131
+ ## Bias, Risks and Limitations
132
+
133
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
134
+ -->
135
+
136
+ <!--
137
+ ### Recommendations
138
+
139
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
140
+ -->
141
+
142
+ ## Training Details
143
+
144
+ ### Training Dataset
145
+
146
+ #### Unnamed Dataset
147
+
148
+
149
+ * Size: 50,881 training samples
150
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
151
+ * Approximate statistics based on the first 1000 samples:
152
+ | | sentence_0 | sentence_1 | sentence_2 |
153
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
154
+ | type | string | string | string |
155
+ | details | <ul><li>min: 6 tokens</li><li>mean: 13.59 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.56 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.67 tokens</li><li>max: 52 tokens</li></ul> |
156
+ * Samples:
157
+ | sentence_0 | sentence_1 | sentence_2 |
158
+ |:--------------------------------------------------------|:-----------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------|
159
+ | <code>What does Donald Trump think of India?</code> | <code>Donald Trump: What is Donald Trump's take on India? Will it affect Indians?</code> | <code>How is the presidency of Donald Trump going to affect India's IT industry?</code> |
160
+ | <code>What is the best way to whiten your teeth?</code> | <code>What can I do to whiten my teeth?</code> | <code>Can you get teeth whitening even if you have a cavity?</code> |
161
+ | <code>How can we meet to PM Narendra Modi?</code> | <code>How can I meet Narendra Modi if it's very important?</code> | <code>How can I contact PM Narendra Modi Ji if I know anyone who may have black money?</code> |
162
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
163
+ ```json
164
+ {
165
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
166
+ "triplet_margin": 5
167
+ }
168
+ ```
169
+
170
+ ### Training Hyperparameters
171
+ #### Non-Default Hyperparameters
172
+
173
+ - `per_device_train_batch_size`: 16
174
+ - `per_device_eval_batch_size`: 16
175
+ - `num_train_epochs`: 10
176
+ - `multi_dataset_batch_sampler`: round_robin
177
+
178
+ #### All Hyperparameters
179
+ <details><summary>Click to expand</summary>
180
+
181
+ - `overwrite_output_dir`: False
182
+ - `do_predict`: False
183
+ - `eval_strategy`: no
184
+ - `prediction_loss_only`: True
185
+ - `per_device_train_batch_size`: 16
186
+ - `per_device_eval_batch_size`: 16
187
+ - `per_gpu_train_batch_size`: None
188
+ - `per_gpu_eval_batch_size`: None
189
+ - `gradient_accumulation_steps`: 1
190
+ - `eval_accumulation_steps`: None
191
+ - `torch_empty_cache_steps`: None
192
+ - `learning_rate`: 5e-05
193
+ - `weight_decay`: 0.0
194
+ - `adam_beta1`: 0.9
195
+ - `adam_beta2`: 0.999
196
+ - `adam_epsilon`: 1e-08
197
+ - `max_grad_norm`: 1
198
+ - `num_train_epochs`: 10
199
+ - `max_steps`: -1
200
+ - `lr_scheduler_type`: linear
201
+ - `lr_scheduler_kwargs`: {}
202
+ - `warmup_ratio`: 0.0
203
+ - `warmup_steps`: 0
204
+ - `log_level`: passive
205
+ - `log_level_replica`: warning
206
+ - `log_on_each_node`: True
207
+ - `logging_nan_inf_filter`: True
208
+ - `save_safetensors`: True
209
+ - `save_on_each_node`: False
210
+ - `save_only_model`: False
211
+ - `restore_callback_states_from_checkpoint`: False
212
+ - `no_cuda`: False
213
+ - `use_cpu`: False
214
+ - `use_mps_device`: False
215
+ - `seed`: 42
216
+ - `data_seed`: None
217
+ - `jit_mode_eval`: False
218
+ - `use_ipex`: False
219
+ - `bf16`: False
220
+ - `fp16`: False
221
+ - `fp16_opt_level`: O1
222
+ - `half_precision_backend`: auto
223
+ - `bf16_full_eval`: False
224
+ - `fp16_full_eval`: False
225
+ - `tf32`: None
226
+ - `local_rank`: 0
227
+ - `ddp_backend`: None
228
+ - `tpu_num_cores`: None
229
+ - `tpu_metrics_debug`: False
230
+ - `debug`: []
231
+ - `dataloader_drop_last`: False
232
+ - `dataloader_num_workers`: 0
233
+ - `dataloader_prefetch_factor`: None
234
+ - `past_index`: -1
235
+ - `disable_tqdm`: False
236
+ - `remove_unused_columns`: True
237
+ - `label_names`: None
238
+ - `load_best_model_at_end`: False
239
+ - `ignore_data_skip`: False
240
+ - `fsdp`: []
241
+ - `fsdp_min_num_params`: 0
242
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
243
+ - `fsdp_transformer_layer_cls_to_wrap`: None
244
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
245
+ - `deepspeed`: None
246
+ - `label_smoothing_factor`: 0.0
247
+ - `optim`: adamw_torch
248
+ - `optim_args`: None
249
+ - `adafactor`: False
250
+ - `group_by_length`: False
251
+ - `length_column_name`: length
252
+ - `ddp_find_unused_parameters`: None
253
+ - `ddp_bucket_cap_mb`: None
254
+ - `ddp_broadcast_buffers`: False
255
+ - `dataloader_pin_memory`: True
256
+ - `dataloader_persistent_workers`: False
257
+ - `skip_memory_metrics`: True
258
+ - `use_legacy_prediction_loop`: False
259
+ - `push_to_hub`: False
260
+ - `resume_from_checkpoint`: None
261
+ - `hub_model_id`: None
262
+ - `hub_strategy`: every_save
263
+ - `hub_private_repo`: False
264
+ - `hub_always_push`: False
265
+ - `gradient_checkpointing`: False
266
+ - `gradient_checkpointing_kwargs`: None
267
+ - `include_inputs_for_metrics`: False
268
+ - `eval_do_concat_batches`: True
269
+ - `fp16_backend`: auto
270
+ - `push_to_hub_model_id`: None
271
+ - `push_to_hub_organization`: None
272
+ - `mp_parameters`:
273
+ - `auto_find_batch_size`: False
274
+ - `full_determinism`: False
275
+ - `torchdynamo`: None
276
+ - `ray_scope`: last
277
+ - `ddp_timeout`: 1800
278
+ - `torch_compile`: False
279
+ - `torch_compile_backend`: None
280
+ - `torch_compile_mode`: None
281
+ - `dispatch_batches`: None
282
+ - `split_batches`: None
283
+ - `include_tokens_per_second`: False
284
+ - `include_num_input_tokens_seen`: False
285
+ - `neftune_noise_alpha`: None
286
+ - `optim_target_modules`: None
287
+ - `batch_eval_metrics`: False
288
+ - `eval_on_start`: False
289
+ - `use_liger_kernel`: False
290
+ - `eval_use_gather_object`: False
291
+ - `batch_sampler`: batch_sampler
292
+ - `multi_dataset_batch_sampler`: round_robin
293
+
294
+ </details>
295
+
296
+ ### Training Logs
297
+ | Epoch | Step | Training Loss |
298
+ |:------:|:-----:|:-------------:|
299
+ | 0.3143 | 500 | 3.4002 |
300
+ | 0.6285 | 1000 | 1.4741 |
301
+ | 0.9428 | 1500 | 1.0103 |
302
+ | 1.2571 | 2000 | 0.7645 |
303
+ | 1.5713 | 2500 | 0.6256 |
304
+ | 1.8856 | 3000 | 0.5197 |
305
+ | 2.1999 | 3500 | 0.4278 |
306
+ | 2.5141 | 4000 | 0.3611 |
307
+ | 2.8284 | 4500 | 0.2858 |
308
+ | 3.1427 | 5000 | 0.236 |
309
+ | 3.4569 | 5500 | 0.2013 |
310
+ | 3.7712 | 6000 | 0.1623 |
311
+ | 4.0855 | 6500 | 0.1395 |
312
+ | 4.3997 | 7000 | 0.1112 |
313
+ | 4.7140 | 7500 | 0.1033 |
314
+ | 5.0283 | 8000 | 0.0853 |
315
+ | 5.3426 | 8500 | 0.0716 |
316
+ | 5.6568 | 9000 | 0.0644 |
317
+ | 5.9711 | 9500 | 0.0577 |
318
+ | 6.2854 | 10000 | 0.0522 |
319
+ | 6.5996 | 10500 | 0.0444 |
320
+ | 6.9139 | 11000 | 0.0417 |
321
+ | 7.2282 | 11500 | 0.0328 |
322
+ | 7.5424 | 12000 | 0.0326 |
323
+ | 7.8567 | 12500 | 0.0326 |
324
+ | 8.1710 | 13000 | 0.0267 |
325
+ | 8.4852 | 13500 | 0.0234 |
326
+ | 8.7995 | 14000 | 0.025 |
327
+ | 9.1138 | 14500 | 0.0224 |
328
+ | 9.4280 | 15000 | 0.0198 |
329
+ | 9.7423 | 15500 | 0.0206 |
330
+
331
+
332
+ ### Framework Versions
333
+ - Python: 3.12.6
334
+ - Sentence Transformers: 3.1.1
335
+ - Transformers: 4.45.1
336
+ - PyTorch: 2.4.1+cu121
337
+ - Accelerate: 0.34.2
338
+ - Datasets: 3.0.1
339
+ - Tokenizers: 0.20.0
340
+
341
+ ## Citation
342
+
343
+ ### BibTeX
344
+
345
+ #### Sentence Transformers
346
+ ```bibtex
347
+ @inproceedings{reimers-2019-sentence-bert,
348
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
349
+ author = "Reimers, Nils and Gurevych, Iryna",
350
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
351
+ month = "11",
352
+ year = "2019",
353
+ publisher = "Association for Computational Linguistics",
354
+ url = "https://arxiv.org/abs/1908.10084",
355
+ }
356
+ ```
357
+
358
+ #### TripletLoss
359
+ ```bibtex
360
+ @misc{hermans2017defense,
361
+ title={In Defense of the Triplet Loss for Person Re-Identification},
362
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
363
+ year={2017},
364
+ eprint={1703.07737},
365
+ archivePrefix={arXiv},
366
+ primaryClass={cs.CV}
367
+ }
368
+ ```
369
+
370
+ <!--
371
+ ## Glossary
372
+
373
+ *Clearly define terms in order to be accessible across audiences.*
374
+ -->
375
+
376
+ <!--
377
+ ## Model Card Authors
378
+
379
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
380
+ -->
381
+
382
+ <!--
383
+ ## Model Card Contact
384
+
385
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
386
+ -->
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distilroberta-base",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 6,
20
+ "pad_token_id": 1,
21
+ "position_embedding_type": "absolute",
22
+ "torch_dtype": "float32",
23
+ "transformers_version": "4.45.1",
24
+ "type_vocab_size": 1,
25
+ "use_cache": true,
26
+ "vocab_size": 50265
27
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.1",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7eb05271d72edf7579a963ae599e53f87f6a3c102563e608ab9e1cf762e6b1c3
3
+ size 328485128
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": false,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "pad_token": "<pad>",
53
+ "sep_token": "</s>",
54
+ "tokenizer_class": "RobertaTokenizer",
55
+ "trim_offsets": true,
56
+ "unk_token": "<unk>"
57
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff