File size: 1,710 Bytes
e3558cd e57b57b e3558cd e34d949 e3558cd e34d949 e3558cd e34d949 f69b8ef 5460e8d e3558cd 5460e8d e34d949 5460e8d e34d949 5460e8d e34d949 5460e8d e34d949 5460e8d e3558cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: apache-2.0
language:
- en
datasets:
- AiresPucrs/CelebA-Smiles
metrics:
- accuracy
tags:
- image-classification
---
# LeNNon Smile Detector (Teeny-Tiny Castle)
This model is part of a tutorial tied to the [Teeny-Tiny Castle](https://github.com/Nkluge-correa/TeenyTinyCastle), an open-source repository containing educational tools for AI Ethics and Safety research.
## How to Use
```python
import torch
from PIL import Image
from lennon import LeNNon
from torchvision import transforms
from huggingface_hub import hf_hub_download
# Download the pytorch model
hf_hub_download(repo_id="AiresPucrs/LeNNon-Smile-Detector",
filename="LeNNon-Smile-Detector.pt",
local_dir="./",
repo_type="model"
)
# Download the source implementation of the model's architecture
hf_hub_download(repo_id="AiresPucrs/LeNNon-Smile-Detector",
filename="lennon.py",
local_dir="./",
repo_type="model"
)
# Check if GPU is available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the model an pass it to the proper device
model = torch.load('./LeNNon-Smile-Detector.pt')
model = model.to(device)
model.eval()
# This `transform` object will transform our test images into proper tensors
transform = transforms.Compose([
transforms.Resize((100, 100)), # Resize the image to 100x100
transforms.ToTensor(),
])
image_path = "your_image_path_here"
# Open and preprocess he image
image = Image.open(image_path)
tensor = transform(image)
tensor = tensor.to(device)
# forward pass trough the model
with torch.no_grad():
outputs = model(tensor)
# Get the class prediction
_, predicted = torch.max(outputs.data, 1)
print("Smiling" if predicted.item() > 0 else "Not Smiling")
```
|