nicholasKluge
commited on
Commit
•
534cd39
1
Parent(s):
248a020
Create lennon.py
Browse files
lennon.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
|
3 |
+
class LeNNon(nn.Module):
|
4 |
+
def __init__(self):
|
5 |
+
""" Define a CNN architecture used for image classification.
|
6 |
+
This class defines the LeNNon architecture as a PyTorch module
|
7 |
+
"""
|
8 |
+
super(LeNNon, self).__init__()
|
9 |
+
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
|
10 |
+
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
|
11 |
+
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
|
12 |
+
self.fc1 = nn.Linear(32 * 25 * 25, 128)
|
13 |
+
self.fc2 = nn.Linear(128, 10)
|
14 |
+
|
15 |
+
def forward(self, x):
|
16 |
+
"""
|
17 |
+
Perform a forward pass through the LeNNon architecture.
|
18 |
+
|
19 |
+
This method applies the convolutional layers, max pooling layers,
|
20 |
+
and fully connected layers to the input tensor x.
|
21 |
+
|
22 |
+
Parameters:
|
23 |
+
-----------
|
24 |
+
x (torch.Tensor): The input tensor.
|
25 |
+
|
26 |
+
Returns:
|
27 |
+
--------
|
28 |
+
torch.Tensor: The output tensor.
|
29 |
+
"""
|
30 |
+
x = self.pool(torch.relu(self.conv1(x)))
|
31 |
+
x = self.pool(torch.relu(self.conv2(x)))
|
32 |
+
x = x.view(-1, 32 * 25 * 25)
|
33 |
+
x = torch.relu(self.fc1(x))
|
34 |
+
x = self.fc2(x)
|
35 |
+
return x
|