Aitor commited on
Commit
d717ea5
1 Parent(s): 95a5888

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 804.66 +/- 299.98
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b24a707646ff2579f821c15e452a847e3287e39126e4517cbfed4fe7f276ecc
3
+ size 129256
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc15a4af1f0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc15a4af280>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc15a4af310>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc15a4af3a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fc15a4af430>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fc15a4af4c0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc15a4af550>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc15a4af5e0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fc15a4af670>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc15a4af700>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc15a4af790>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc15a4af820>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fc15a4b0090>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1678227298335134457,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAkVhT+2+SY/ujA8vWfg7z08xyq9mxz9vpK2bT+fuly+3hZ1vswK4j/5B4W/eCrWvN4CtD866C08FqeZvwBY4z18D2M/RZ7ZPxGGHD9jIoe+z6ynv8XdsTyfDfq+6isgvdy8Sr9rjCg/uVg/wEJDJD9I5ws+Ph19P+kCM78kDtA+BqGJP6WlPj9H/P8+6LVevlL4GL+Lr2I+V6orv+HXrb8sxqE+E2RwP7bs1r7FjwU+n6eYP4vsuT4V4SA/YibOPOLEHT8zYo6+95SOPpqMgD3cvEq/a4woP9w/qz5CQyQ/hkPmPTnruT5bFZg+aji1P7iGxL4wVPG+lAXxPsD5UD8zFNc/0ZgsPynwUL8kkAY/veyzP1QYcbtbqW6/wfWHP4s/vD9QhY+/sgwoPg36uz6OT4+/MTtkv2dcYL96vTy+3LxKv2uMKD/cP6s+QkMkP+B8nL4bBHa/FV9pPwdzTz8hZuU+XuY9v395Hj/Ph64/o0/iPz08Er0bR4o/uov1Pq5Ns781RYq5P7cvv5+SOb+dJc4/2PPYvmqbnD6paZo/qZ/RPzP+rLp8uIq/J8W4vKagoT+xacK/3D+rPjx8x7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACcfqi2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAeDZfvQAAAAAfsdm/AAAAAH7Yxb0AAAAAWgXpPwAAAADUt8C9AAAAADE+9z8AAAAASqihPQAAAADwNty/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmg9BNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHSUkL0AAAAA29X/vwAAAAB8uUW9AAAAAEKY8z8AAAAA0kypPQAAAAANjuM/AAAAADOrk7wAAAAAJe73vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOzLULYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBV92S8AAAAAJz++L8AAAAA6fbovQAAAACUEu4/AAAAAMV00T0AAAAAtLHlPwAAAACGYAY+AAAAAABG5L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADOALq1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAULZqvQAAAAADYuG/AAAAAGvNCr4AAAAAegH6PwAAAAASMYs8AAAAAPGL+z8AAAAAG9zTOwAAAABvHO2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHbE4X40uUWMAWyUTegDjAF0lEdAs1QHNzKcNHV9lChoBkdAcPdyk9ECvGgHTegDaAhHQLNWwzpHI6t1fZQoaAZHQH7v7tiQT25oB03oA2gIR0CzVyUlRgqmdX2UKGgGR0B5ua7Dl5nlaAdN6ANoCEdAs1lCxSpBHHV9lChoBkdAfwYI2OyVwGgHTegDaAhHQLNac5CF9KF1fZQoaAZHQHVvb0WdmQNoB03oA2gIR0CzXMs1n/T9dX2UKGgGR0CBCaQvHtF8aAdN6ANoCEdAs10tZzPrwHV9lChoBkdAh5qrX18LKGgHTegDaAhHQLNfgfx+a0B1fZQoaAZHQI1V2+AVfu1oB03oA2gIR0CzYUC8J2MbdX2UKGgGR0CA/iHE/B3zaAdN6ANoCEdAs2SyYb83uXV9lChoBkdAgOx4Cp3otGgHTegDaAhHQLNlEw+dK/V1fZQoaAZHQHmB4ysS00FoB03oA2gIR0CzZyfv4M4MdX2UKGgGR0CJN26ltTDPaAdN6ANoCEdAs2hh8Ti84HV9lChoBkdAefDEH+qBE2gHTegDaAhHQLNqy5MURFt1fZQoaAZHQI98N4NZvDRoB03oA2gIR0CzayxCIDYAdX2UKGgGR0CFne0rsjVyaAdN6ANoCEdAs21XjS5RTHV9lChoBkdAhNSEE9t/F2gHTegDaAhHQLNuwdYGMXJ1fZQoaAZHQIQVV4s3AEdoB03oA2gIR0CzcpbedkJ8dX2UKGgGR0Bz/DBO58SgaAdN6ANoCEdAs3M2t3fQ8nV9lChoBkdAfqurMTviLmgHTegDaAhHQLN1ZvBrN4Z1fZQoaAZHQIBFJXMhX8xoB03oA2gIR0CzdquymhugdX2UKGgGR0CNFzXoTwlTaAdN6ANoCEdAs3kern1WbXV9lChoBkdAeDH/rB0p3GgHTegDaAhHQLN5gBikO7R1fZQoaAZHQIMz+4oZydZoB03oA2gIR0Cze55GSZBtdX2UKGgGR0CGm64YrJ8waAdN6ANoCEdAs3zVkd3jdnV9lChoBkdAhS0/V7Qb/GgHTegDaAhHQLOAWHYYixF1fZQoaAZHQIawvYDklu5oB03oA2gIR0CzgPknb7CSdX2UKGgGR0B/I3Z+QU5/aAdN6ANoCEdAs4OxLbpNbnV9lChoBkdAfJDGeMAFPmgHTegDaAhHQLOE6E0BOpN1fZQoaAZHQHVHYnrpqypoB03oA2gIR0Czh2aBNEgGdX2UKGgGR0BoBCXWvr4WaAdN6ANoCEdAs4fLUTcqOXV9lChoBkdAipUbaRISUWgHTegDaAhHQLOJ9dFvybx1fZQoaAZHQHFe+qFRHgBoB03oA2gIR0CziyjMaCL/dX2UKGgGR0CABLEMspXqaAdN6ANoCEdAs44EbdadMHV9lChoBkdAdtBmz0HyE2gHTegDaAhHQLOOmdz4k/t1fZQoaAZHQIJe087p3X9oB03oA2gIR0CzkdGlVLi/dX2UKGgGR0CBCy5hBqsVaAdN6ANoCEdAs5MJ6HCXQnV9lChoBkdAbT3PQfIS12gHTegDaAhHQLOVdiwB5op1fZQoaAZHQIdIoYxcmjVoB03oA2gIR0CzldmOdXkpdX2UKGgGR0CQz2gHeJpGaAdN6ANoCEdAs5gD0lJHy3V9lChoBkdAjSzhrvb48GgHTegDaAhHQLOZNbTtsvZ1fZQoaAZHQIeAg3HaN+9oB03oA2gIR0Czm7n/95yEdX2UKGgGR0CI1+hTOxB3aAdN6ANoCEdAs5xJ92HLzXV9lChoBkdAgsO11fVqe2gHTegDaAhHQLOflU/wAlx1fZQoaAZHQHx6yWNWEK5oB03oA2gIR0CzoTXNLUTddX2UKGgGR0CIpWYG+sYEaAdN6ANoCEdAs6OjjFQ2uXV9lChoBkdAexoHAh0QsmgHTegDaAhHQLOkBry1/lR1fZQoaAZHQIICeWMS9M9oB03oA2gIR0CzpjeI2wV1dX2UKGgGR0CNu1Ukv9LpaAdN6ANoCEdAs6d1g1FYuHV9lChoBkdAWSwSmIj4YmgHS3toCEdAs6hFfBvaUXV9lChoBkdAiv+O09hZyWgHTegDaAhHQLOqDnA6+391fZQoaAZHQIdd2hysCDFoB03oA2gIR0Czqnt/z8P4dX2UKGgGR0CK7KtcOby6aAdN6ANoCEdAs63ZGMGX5XV9lChoBkdActjgUDdP+GgHTegDaAhHQLOwum8M/hV1fZQoaAZHQIah1b7j1f5oB03oA2gIR0Czsm8pkPMCdX2UKGgGR0BtlMpw0fozaAdN6ANoCEdAs7LQWFev6nV9lChoBkdAifHXtjTa02gHTegDaAhHQLO1HGPPszF1fZQoaAZHQIikcNSZSeloB03oA2gIR0CztwvZmI0qdX2UKGgGR0CL4Nwb2lEaaAdN6ANoCEdAs7jIz9CNTHV9lChoBkdAg206HsTnJWgHTegDaAhHQLO5LLUkOZt1fZQoaAZHQIqbr127nPpoB03oA2gIR0Czu9figkC4dX2UKGgGR0CJ5URVZLZjaAdN6ANoCEdAs77jFUADJXV9lChoBkdAa7v1LamGd2gHTegDaAhHQLPAqoxpL291fZQoaAZHQIUYiN83MpxoB03oA2gIR0CzwQwYxcmjdX2UKGgGR0CIy0QDFId3aAdN6ANoCEdAs8MrM8ox6HV9lChoBkdAkFxundfsu2gHTegDaAhHQLPFJLkCFK11fZQoaAZHQIimTOeJ53VoB03oA2gIR0Czx3jnied1dX2UKGgGR0CQ2jsj3VTaaAdN6ANoCEdAs8gRjpcHGHV9lChoBkdAkuz8189fTmgHTegDaAhHQLPLgmQr+YN1fZQoaAZHQJIYvldTo+xoB03oA2gIR0Czzn+vMbFTdX2UKGgGR0CEtiG4ZuQ7aAdN6ANoCEdAs9BNrXUYsXV9lChoBkdAjJ2vT5O8CmgHTegDaAhHQLPQrCx/ust1fZQoaAZHQIk13GS6lLxoB03oA2gIR0Cz0tBrFfiQdX2UKGgGR0CM7E93bEgoaAdN6ANoCEdAs9TC5AhStXV9lChoBkdAizOTRplBhWgHTegDaAhHQLPWesjFAFB1fZQoaAZHQI+z/QWvbGpoB03oA2gIR0Cz1tthAnlXdX2UKGgGR0CN0ENkOI69aAdN6ANoCEdAs9j+c4HX3HV9lChoBkdAjxoEtNBWxWgHTegDaAhHQLPb4Mvysjp1fZQoaAZHQI3ZghGH58BoB03oA2gIR0Cz3k1bJOnEdX2UKGgGR0CH6aTxG2CvaAdN6ANoCEdAs96sDlo11nV9lChoBkdAi/7Gce8wpWgHTegDaAhHQLPgyuGKyfN1fZQoaAZHQHTaHrD63y9oB020AmgIR0Cz4nfuTibVdX2UKGgGR0CEbtyq+8GtaAdN6ANoCEdAs+Kz3evZAnV9lChoBkdAi6ddkSVW0mgHTegDaAhHQLPkuh0hePd1fZQoaAZHQIl/HmDDjzZoB03oA2gIR0Cz5tNcOby6dX2UKGgGR0CELbmK64DtaAdN6ANoCEdAs+iysaKk23V9lChoBkdAi1Wrwe/5+GgHTegDaAhHQLPpCROUMXt1fZQoaAZHQIsi/TgEU0xoB03oA2gIR0Cz7Ax7u2JBdX2UKGgGR0CLjwcRUWEcaAdN6ANoCEdAs+6ekWRA8nV9lChoBkdAkjOHuRcNY2gHTegDaAhHQLPwTaaCtih1fZQoaAZHQIo+aP+4smRoB03oA2gIR0Cz8JOYhMakdX2UKGgGR0CPQjR5TqB3aAdN6ANoCEdAs/KnW+XZ5HV9lChoBkdAjd/vfTCtR2gHTegDaAhHQLP0yjX4CZF1fZQoaAZHQIJbjQRf4RFoB03oA2gIR0Cz9nPp+tr9dX2UKGgGR0CRiuq46Oo6aAdN6ANoCEdAs/awOx0MgHV9lChoBkdAkhqCv1UVBWgHTegDaAhHQLP5ZfzjFQ51fZQoaAZHQJN+bP8hs69oB03oA2gIR0Cz/J57LMcIdX2UKGgGR0CJbsb9ZRsNaAdN6ANoCEdAs/5UTVUdaXV9lChoBkdAkGAes5n14GgHTegDaAhHQLP+kMBIWgx1fZQoaAZHQIu2KhlDneVoB03oA2gIR0C0AI/SYw7DdWUu"
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c68fb517cf1f43cdf3a689b9a2d3fb07451c9a8094ed2df7e6eb49238ed4969f
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c09eb4bd6eca9fd700accbc988df113b41c6f0edb0afc682f5e2bef524588092
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc15a4af1f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc15a4af280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc15a4af310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc15a4af3a0>", "_build": "<function ActorCriticPolicy._build at 0x7fc15a4af430>", "forward": "<function ActorCriticPolicy.forward at 0x7fc15a4af4c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc15a4af550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc15a4af5e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc15a4af670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc15a4af700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc15a4af790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc15a4af820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc15a4b0090>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678227298335134457, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAkVhT+2+SY/ujA8vWfg7z08xyq9mxz9vpK2bT+fuly+3hZ1vswK4j/5B4W/eCrWvN4CtD866C08FqeZvwBY4z18D2M/RZ7ZPxGGHD9jIoe+z6ynv8XdsTyfDfq+6isgvdy8Sr9rjCg/uVg/wEJDJD9I5ws+Ph19P+kCM78kDtA+BqGJP6WlPj9H/P8+6LVevlL4GL+Lr2I+V6orv+HXrb8sxqE+E2RwP7bs1r7FjwU+n6eYP4vsuT4V4SA/YibOPOLEHT8zYo6+95SOPpqMgD3cvEq/a4woP9w/qz5CQyQ/hkPmPTnruT5bFZg+aji1P7iGxL4wVPG+lAXxPsD5UD8zFNc/0ZgsPynwUL8kkAY/veyzP1QYcbtbqW6/wfWHP4s/vD9QhY+/sgwoPg36uz6OT4+/MTtkv2dcYL96vTy+3LxKv2uMKD/cP6s+QkMkP+B8nL4bBHa/FV9pPwdzTz8hZuU+XuY9v395Hj/Ph64/o0/iPz08Er0bR4o/uov1Pq5Ns781RYq5P7cvv5+SOb+dJc4/2PPYvmqbnD6paZo/qZ/RPzP+rLp8uIq/J8W4vKagoT+xacK/3D+rPjx8x7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACcfqi2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAeDZfvQAAAAAfsdm/AAAAAH7Yxb0AAAAAWgXpPwAAAADUt8C9AAAAADE+9z8AAAAASqihPQAAAADwNty/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmg9BNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHSUkL0AAAAA29X/vwAAAAB8uUW9AAAAAEKY8z8AAAAA0kypPQAAAAANjuM/AAAAADOrk7wAAAAAJe73vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOzLULYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBV92S8AAAAAJz++L8AAAAA6fbovQAAAACUEu4/AAAAAMV00T0AAAAAtLHlPwAAAACGYAY+AAAAAABG5L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADOALq1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAULZqvQAAAAADYuG/AAAAAGvNCr4AAAAAegH6PwAAAAASMYs8AAAAAPGL+z8AAAAAG9zTOwAAAABvHO2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHbE4X40uUWMAWyUTegDjAF0lEdAs1QHNzKcNHV9lChoBkdAcPdyk9ECvGgHTegDaAhHQLNWwzpHI6t1fZQoaAZHQH7v7tiQT25oB03oA2gIR0CzVyUlRgqmdX2UKGgGR0B5ua7Dl5nlaAdN6ANoCEdAs1lCxSpBHHV9lChoBkdAfwYI2OyVwGgHTegDaAhHQLNac5CF9KF1fZQoaAZHQHVvb0WdmQNoB03oA2gIR0CzXMs1n/T9dX2UKGgGR0CBCaQvHtF8aAdN6ANoCEdAs10tZzPrwHV9lChoBkdAh5qrX18LKGgHTegDaAhHQLNfgfx+a0B1fZQoaAZHQI1V2+AVfu1oB03oA2gIR0CzYUC8J2MbdX2UKGgGR0CA/iHE/B3zaAdN6ANoCEdAs2SyYb83uXV9lChoBkdAgOx4Cp3otGgHTegDaAhHQLNlEw+dK/V1fZQoaAZHQHmB4ysS00FoB03oA2gIR0CzZyfv4M4MdX2UKGgGR0CJN26ltTDPaAdN6ANoCEdAs2hh8Ti84HV9lChoBkdAefDEH+qBE2gHTegDaAhHQLNqy5MURFt1fZQoaAZHQI98N4NZvDRoB03oA2gIR0CzayxCIDYAdX2UKGgGR0CFne0rsjVyaAdN6ANoCEdAs21XjS5RTHV9lChoBkdAhNSEE9t/F2gHTegDaAhHQLNuwdYGMXJ1fZQoaAZHQIQVV4s3AEdoB03oA2gIR0CzcpbedkJ8dX2UKGgGR0Bz/DBO58SgaAdN6ANoCEdAs3M2t3fQ8nV9lChoBkdAfqurMTviLmgHTegDaAhHQLN1ZvBrN4Z1fZQoaAZHQIBFJXMhX8xoB03oA2gIR0CzdquymhugdX2UKGgGR0CNFzXoTwlTaAdN6ANoCEdAs3kern1WbXV9lChoBkdAeDH/rB0p3GgHTegDaAhHQLN5gBikO7R1fZQoaAZHQIMz+4oZydZoB03oA2gIR0Cze55GSZBtdX2UKGgGR0CGm64YrJ8waAdN6ANoCEdAs3zVkd3jdnV9lChoBkdAhS0/V7Qb/GgHTegDaAhHQLOAWHYYixF1fZQoaAZHQIawvYDklu5oB03oA2gIR0CzgPknb7CSdX2UKGgGR0B/I3Z+QU5/aAdN6ANoCEdAs4OxLbpNbnV9lChoBkdAfJDGeMAFPmgHTegDaAhHQLOE6E0BOpN1fZQoaAZHQHVHYnrpqypoB03oA2gIR0Czh2aBNEgGdX2UKGgGR0BoBCXWvr4WaAdN6ANoCEdAs4fLUTcqOXV9lChoBkdAipUbaRISUWgHTegDaAhHQLOJ9dFvybx1fZQoaAZHQHFe+qFRHgBoB03oA2gIR0CziyjMaCL/dX2UKGgGR0CABLEMspXqaAdN6ANoCEdAs44EbdadMHV9lChoBkdAdtBmz0HyE2gHTegDaAhHQLOOmdz4k/t1fZQoaAZHQIJe087p3X9oB03oA2gIR0CzkdGlVLi/dX2UKGgGR0CBCy5hBqsVaAdN6ANoCEdAs5MJ6HCXQnV9lChoBkdAbT3PQfIS12gHTegDaAhHQLOVdiwB5op1fZQoaAZHQIdIoYxcmjVoB03oA2gIR0CzldmOdXkpdX2UKGgGR0CQz2gHeJpGaAdN6ANoCEdAs5gD0lJHy3V9lChoBkdAjSzhrvb48GgHTegDaAhHQLOZNbTtsvZ1fZQoaAZHQIeAg3HaN+9oB03oA2gIR0Czm7n/95yEdX2UKGgGR0CI1+hTOxB3aAdN6ANoCEdAs5xJ92HLzXV9lChoBkdAgsO11fVqe2gHTegDaAhHQLOflU/wAlx1fZQoaAZHQHx6yWNWEK5oB03oA2gIR0CzoTXNLUTddX2UKGgGR0CIpWYG+sYEaAdN6ANoCEdAs6OjjFQ2uXV9lChoBkdAexoHAh0QsmgHTegDaAhHQLOkBry1/lR1fZQoaAZHQIICeWMS9M9oB03oA2gIR0CzpjeI2wV1dX2UKGgGR0CNu1Ukv9LpaAdN6ANoCEdAs6d1g1FYuHV9lChoBkdAWSwSmIj4YmgHS3toCEdAs6hFfBvaUXV9lChoBkdAiv+O09hZyWgHTegDaAhHQLOqDnA6+391fZQoaAZHQIdd2hysCDFoB03oA2gIR0Czqnt/z8P4dX2UKGgGR0CK7KtcOby6aAdN6ANoCEdAs63ZGMGX5XV9lChoBkdActjgUDdP+GgHTegDaAhHQLOwum8M/hV1fZQoaAZHQIah1b7j1f5oB03oA2gIR0Czsm8pkPMCdX2UKGgGR0BtlMpw0fozaAdN6ANoCEdAs7LQWFev6nV9lChoBkdAifHXtjTa02gHTegDaAhHQLO1HGPPszF1fZQoaAZHQIikcNSZSeloB03oA2gIR0CztwvZmI0qdX2UKGgGR0CL4Nwb2lEaaAdN6ANoCEdAs7jIz9CNTHV9lChoBkdAg206HsTnJWgHTegDaAhHQLO5LLUkOZt1fZQoaAZHQIqbr127nPpoB03oA2gIR0Czu9figkC4dX2UKGgGR0CJ5URVZLZjaAdN6ANoCEdAs77jFUADJXV9lChoBkdAa7v1LamGd2gHTegDaAhHQLPAqoxpL291fZQoaAZHQIUYiN83MpxoB03oA2gIR0CzwQwYxcmjdX2UKGgGR0CIy0QDFId3aAdN6ANoCEdAs8MrM8ox6HV9lChoBkdAkFxundfsu2gHTegDaAhHQLPFJLkCFK11fZQoaAZHQIimTOeJ53VoB03oA2gIR0Czx3jnied1dX2UKGgGR0CQ2jsj3VTaaAdN6ANoCEdAs8gRjpcHGHV9lChoBkdAkuz8189fTmgHTegDaAhHQLPLgmQr+YN1fZQoaAZHQJIYvldTo+xoB03oA2gIR0Czzn+vMbFTdX2UKGgGR0CEtiG4ZuQ7aAdN6ANoCEdAs9BNrXUYsXV9lChoBkdAjJ2vT5O8CmgHTegDaAhHQLPQrCx/ust1fZQoaAZHQIk13GS6lLxoB03oA2gIR0Cz0tBrFfiQdX2UKGgGR0CM7E93bEgoaAdN6ANoCEdAs9TC5AhStXV9lChoBkdAizOTRplBhWgHTegDaAhHQLPWesjFAFB1fZQoaAZHQI+z/QWvbGpoB03oA2gIR0Cz1tthAnlXdX2UKGgGR0CN0ENkOI69aAdN6ANoCEdAs9j+c4HX3HV9lChoBkdAjxoEtNBWxWgHTegDaAhHQLPb4Mvysjp1fZQoaAZHQI3ZghGH58BoB03oA2gIR0Cz3k1bJOnEdX2UKGgGR0CH6aTxG2CvaAdN6ANoCEdAs96sDlo11nV9lChoBkdAi/7Gce8wpWgHTegDaAhHQLPgyuGKyfN1fZQoaAZHQHTaHrD63y9oB020AmgIR0Cz4nfuTibVdX2UKGgGR0CEbtyq+8GtaAdN6ANoCEdAs+Kz3evZAnV9lChoBkdAi6ddkSVW0mgHTegDaAhHQLPkuh0hePd1fZQoaAZHQIl/HmDDjzZoB03oA2gIR0Cz5tNcOby6dX2UKGgGR0CELbmK64DtaAdN6ANoCEdAs+iysaKk23V9lChoBkdAi1Wrwe/5+GgHTegDaAhHQLPpCROUMXt1fZQoaAZHQIsi/TgEU0xoB03oA2gIR0Cz7Ax7u2JBdX2UKGgGR0CLjwcRUWEcaAdN6ANoCEdAs+6ekWRA8nV9lChoBkdAkjOHuRcNY2gHTegDaAhHQLPwTaaCtih1fZQoaAZHQIo+aP+4smRoB03oA2gIR0Cz8JOYhMakdX2UKGgGR0CPQjR5TqB3aAdN6ANoCEdAs/KnW+XZ5HV9lChoBkdAjd/vfTCtR2gHTegDaAhHQLP0yjX4CZF1fZQoaAZHQIJbjQRf4RFoB03oA2gIR0Cz9nPp+tr9dX2UKGgGR0CRiuq46Oo6aAdN6ANoCEdAs/awOx0MgHV9lChoBkdAkhqCv1UVBWgHTegDaAhHQLP5ZfzjFQ51fZQoaAZHQJN+bP8hs69oB03oA2gIR0Cz/J57LMcIdX2UKGgGR0CJbsb9ZRsNaAdN6ANoCEdAs/5UTVUdaXV9lChoBkdAkGAes5n14GgHTegDaAhHQLP+kMBIWgx1fZQoaAZHQIu2KhlDneVoB03oA2gIR0C0AI/SYw7DdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3208cf087ed96a5b2300f10a489efa584d5026311b1c6053da53b21ad077ccb1
3
+ size 1041908
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 804.6593259568442, "std_reward": 299.97901707700447, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-07T23:17:41.551908"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d316e9d01cb2a5bc2c7b0871f3b538c59ab21e62353f92d70eda9abb223a760
3
+ size 2136