File size: 2,743 Bytes
a63b6b9 64cd3ca a63b6b9 9b929dd 0b70ef0 a63b6b9 b18ac4a a63b6b9 1e9a254 eb940db 1e9a254 a63b6b9 f5ebe82 a63b6b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
---
license: cc-by-4.0
datasets:
- CSTR-Edinburgh/vctk
language:
- en
pipeline_tag: text-to-speech
---
[Spaces Demo](https://huggingface.co/spaces/Akjava/matcha-tts_vctk-onnx)
Trained with Matcha-TTS(Not my work,I just converted to onnx) - [Github](https://github.com/shivammehta25/Matcha-TTS) | [Paper](https://arxiv.org/abs/2309.03199)
How to Infer see [Github page](https://github.com/akjava/Matcha-TTS-Japanese/tree/main/examples)
## License
You have to follow the cc-by-4.0 vctk license.
### Datasets License
- VCTK Dataset license are cc-by-4.0
### Tools License
These tools did not effect output license.
- Matcha-TTS - MIT
- ONNX Simplifier - Apache2.0
- onnxruntime - MIT
### Converted model Owner(me)
I release my output under MIT License.If you want your license ,convert it by yourself
## Onnx File Type
All models are simplify(If you need original,export by yourself)
Vocoder:hifigan_univ_v1(some english speaker avoid robotic)
- vctk_univ_simplify.onnx
- vctk_univ_simplify_q8.onnx - Quantized Github page friendly small size ,but 3-5 times slow
Vocoder:hifigan_T2_v1(Good for English)
- vctk_t2_simplify.onnx
- vctk_t2_simplify_q8.onnx - Quantized Github page friendly small size ,but 3-5 times slow
## How to Convert
### Export Model
see Matcha-TTS [ONNX export](https://github.com/shivammehta25/Matcha-TTS)
```
python -m matcha.onnx.export matcha_vctk.ckpt vctk_t2.onnx --vocoder-name "hifigan_T2_v1" --vocoder-checkpoint "generator_v1"
```
### simplify model
```
from onnxsim import simplify
import onnx
import argparse
parser = argparse.ArgumentParser(
description="create simplify onnx"
)
parser.add_argument(
"--input","-i",
type=str,required=True
)
parser.add_argument(
"--output","-o",
type=str
)
args = parser.parse_args()
src_model_path = args.input
if args.output == None:
dst_model_path = src_model_path.replace(".onnx","_simplify.onnx")
else:
dst_model_path = args.output
model = onnx.load(src_model_path)
model_simp, check = simplify(model)
onnx.save(model_simp, dst_model_path)
```
### quantize model
```
from onnxruntime.quantization import quantize_dynamic, QuantType
import argparse
parser = argparse.ArgumentParser(
description="create quantized onnx"
)
parser.add_argument(
"--input","-i",
type=str,required=True
)
parser.add_argument(
"--output","-o",
type=str
)
args = parser.parse_args()
src_model_path = args.input
if args.output == None:
dst_model_path = src_model_path.replace(".onnx","_q8.onnx")
else:
dst_model_path = args.output
# only QUInt8 works well
quantized_model = quantize_dynamic(src_model_path, dst_model_path, weight_type=QuantType.QUInt8)
``` |