--- license: cc-by-4.0 datasets: - CSTR-Edinburgh/vctk language: - en pipeline_tag: text-to-speech --- [Spaces Demo](https://huggingface.co/spaces/Akjava/matcha-tts_vctk-onnx) Trained with Matcha-TTS(Not my work,I just converted to onnx) - [Github](https://github.com/shivammehta25/Matcha-TTS) | [Paper](https://arxiv.org/abs/2309.03199) How to Infer see [Github page](https://github.com/akjava/Matcha-TTS-Japanese/tree/main/examples) ## License You have to follow the cc-by-4.0 vctk license. ### Datasets License - VCTK Dataset license are cc-by-4.0 ### Tools License These tools did not effect output license. - Matcha-TTS - MIT - ONNX Simplifier - Apache2.0 - onnxruntime - MIT ### Converted model Owner(me) I release my output under MIT License.If you want your license ,convert it by yourself ## Onnx File Type All models are simplify(If you need original,export by yourself) Vocoder:hifigan_univ_v1(some english speaker avoid robotic) - vctk_univ_simplify.onnx - vctk_univ_simplify_q8.onnx - Quantized Github page friendly small size ,but 3-5 times slow Vocoder:hifigan_T2_v1(Good for English) - vctk_t2_simplify.onnx - vctk_t2_simplify_q8.onnx - Quantized Github page friendly small size ,but 3-5 times slow ## How to Convert ### Export Model see Matcha-TTS [ONNX export](https://github.com/shivammehta25/Matcha-TTS) ``` python -m matcha.onnx.export matcha_vctk.ckpt vctk_t2.onnx --vocoder-name "hifigan_T2_v1" --vocoder-checkpoint "generator_v1" ``` ### simplify model ``` from onnxsim import simplify import onnx import argparse parser = argparse.ArgumentParser( description="create simplify onnx" ) parser.add_argument( "--input","-i", type=str,required=True ) parser.add_argument( "--output","-o", type=str ) args = parser.parse_args() src_model_path = args.input if args.output == None: dst_model_path = src_model_path.replace(".onnx","_simplify.onnx") else: dst_model_path = args.output model = onnx.load(src_model_path) model_simp, check = simplify(model) onnx.save(model_simp, dst_model_path) ``` ### quantize model ``` from onnxruntime.quantization import quantize_dynamic, QuantType import argparse parser = argparse.ArgumentParser( description="create quantized onnx" ) parser.add_argument( "--input","-i", type=str,required=True ) parser.add_argument( "--output","-o", type=str ) args = parser.parse_args() src_model_path = args.input if args.output == None: dst_model_path = src_model_path.replace(".onnx","_q8.onnx") else: dst_model_path = args.output # only QUInt8 works well quantized_model = quantize_dynamic(src_model_path, dst_model_path, weight_type=QuantType.QUInt8) ```