--- base_model: cardiffnlp/twitter-xlm-roberta-base-sentiment tags: - generated_from_trainer metrics: - f1 model-index: - name: twitter_xlm_robertta_sentiment_financial_news results: [] datasets: - Jean-Baptiste/financial_news_sentiment_mixte_with_phrasebank_75 --- # twitter_xlm_robertta_sentiment_financial_news This model is a fine-tuned version of [cardiffnlp/twitter-xlm-roberta-base-sentiment](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment) on [this]()https://huggingface.co/datasets/Jean-Baptiste/financial_news_sentiment_mixte_with_phrasebank_75 financial dataset. It achieves the following results on the evaluation set: - Loss: 0.4492 - F1: 0.8812 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.518 | 1.0 | 556 | 0.4881 | 0.8184 | | 0.3534 | 2.0 | 1112 | 0.5041 | 0.8797 | | 0.1781 | 3.0 | 1668 | 0.4492 | 0.8812 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.1