--- license: mit tags: - generated_from_trainer datasets: - short-jokes metrics: - accuracy model-index: - name: gpt2-jokes results: - task: name: Causal Language Modeling type: text-generation dataset: name: short-jokes type: short-jokes config: default split: train[:5%] args: default metrics: - name: Accuracy type: accuracy value: 0.8795477617316698 --- # gpt2-jokes This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the short-jokes dataset. It achieves the following results on the evaluation set: - Loss: 0.6748 - Accuracy: 0.8795 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 128 - total_eval_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.06 | 100 | 0.7285 | 0.8732 | | No log | 0.12 | 200 | 0.7141 | 0.8747 | | No log | 0.17 | 300 | 0.7056 | 0.8757 | | No log | 0.23 | 400 | 0.6992 | 0.8764 | | 0.7907 | 0.29 | 500 | 0.6942 | 0.8771 | | 0.7907 | 0.35 | 600 | 0.6906 | 0.8777 | | 0.7907 | 0.41 | 700 | 0.6873 | 0.8779 | | 0.7907 | 0.47 | 800 | 0.6848 | 0.8782 | | 0.7907 | 0.52 | 900 | 0.6830 | 0.8786 | | 0.7105 | 0.58 | 1000 | 0.6809 | 0.8788 | | 0.7105 | 0.64 | 1100 | 0.6794 | 0.8790 | | 0.7105 | 0.7 | 1200 | 0.6780 | 0.8792 | | 0.7105 | 0.76 | 1300 | 0.6770 | 0.8793 | | 0.7105 | 0.81 | 1400 | 0.6760 | 0.8794 | | 0.7034 | 0.87 | 1500 | 0.6755 | 0.8794 | | 0.7034 | 0.93 | 1600 | 0.6750 | 0.8795 | | 0.7034 | 0.99 | 1700 | 0.6748 | 0.8795 | ### Framework versions - Transformers 4.28.0.dev0 - Pytorch 2.0.0-rc1 - Datasets 2.10.1 - Tokenizers 0.13.2