File size: 2,077 Bytes
fcd73b6 456b5ca fcd73b6 456b5ca fcd73b6 456b5ca fcd73b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- Fraser/short-jokes
metrics:
- accuracy
model-index:
- name: pythia-1.4b-deduped-jokes
results:
- task:
name: Causal Language Modeling
type: text-generation
dataset:
name: Fraser/short-jokes
type: Fraser/short-jokes
config: default
split: train[:5%]
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.986989308918276
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pythia-1.4b-deduped-jokes
This model is a fine-tuned version of [EleutherAI/pythia-1.4b-deduped](https://huggingface.co/EleutherAI/pythia-1.4b-deduped) on the Fraser/short-jokes dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0699
- Accuracy: 0.9870
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- training_steps: 400
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.06 | 100 | 0.0729 | 0.9866 |
| No log | 0.12 | 200 | 0.0716 | 0.9868 |
| No log | 0.17 | 300 | 0.0705 | 0.9869 |
| No log | 0.23 | 400 | 0.0699 | 0.9870 |
### Framework versions
- Transformers 4.29.0.dev0
- Pytorch 2.0.0-rc1
- Datasets 2.11.0
- Tokenizers 0.13.3
|