File size: 38,771 Bytes
dbcfe2a 19886f5 dbcfe2a 19886f5 dbcfe2a c3c777b dbcfe2a c3c777b dbcfe2a 19886f5 ba95108 19886f5 ba95108 19886f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 |
# we don't want to support mypy for this file for now
# type: ignore
import numpy as np
from typing import List, Optional, Tuple, Union, Dict
from tqdm import tqdm
from einops import rearrange, repeat
import torch
from torch import nn
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
)
from transformers import AutoConfig
from transformers import AutoModel
from transformers.modeling_utils import PreTrainedModel
try:
from flash_attn.flash_attn_interface import flash_attn_func
except Exception as e:
print(
f"Could not import flash attention. "
)
flash_attn_func = None
PHARIAEMBED_TYPE = "phariaembed"
class RotaryConfig():
def __init__(
self,
dimensions: int = 0,
base: int = 10000,
max_seq_length: int = 2048
):
self.dimensions = dimensions
self.base = base
self.max_seq_length = max_seq_length
class PhariaAdapterConfig:
def __init__(
self,
hidden_size: int,
intermediate_size: int,
mlp_bias: bool,
hidden_act: str
):
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.mlp_bias = mlp_bias
self.hidden_act = hidden_act
def to_dict(self):
return {
"hidden_size": self.hidden_size,
"intermediate_size": self.intermediate_size,
"mlp_bias": self.mlp_bias,
"hidden_act": self.hidden_act,
}
@classmethod
def from_dict(cls, config_dict):
return cls(**config_dict)
class PhariaConfig(PretrainedConfig):
model_type = "phariaembed"
def __init__(
self,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
hidden_act="gelu",
hidden_size=512,
bias_name=None,
initializer_range=0.02,
intermediate_size=2048,
max_position_embeddings=8192,
#model_type="pharia-v2",
model_type="phariaembed",
num_attention_heads=4,
num_hidden_layers=4,
num_key_value_heads=2,
torch_dtype="bfloat16",
transformers_version="4.31.0.dev0",
use_cache=True,
vocab_size=128000,
mlp_bias=True,
attention_bias=True,
tie_word_embeddings=False,
attention_dropout=0.0,
causal_attention=True,
rope_theta=1000000, # rotary_embeddingbase,
rope_scaling=None,
mlp_adapter_config=None,
attn_adapter_config=None,
_attn_implementation='eager',
embedding_head_out=1024,
lora_config=None,
pooling_method=None,
layer_norm_epsilon=1e-05,
**kwargs,
):
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.hidden_act = hidden_act
self.hidden_size = hidden_size
self.initializer_range = initializer_range
self.intermediate_size = intermediate_size
self.max_position_embeddings = max_position_embeddings
self.model_type = model_type
self.num_attention_heads = num_attention_heads
self.num_hidden_layers = num_hidden_layers
self.num_key_value_heads = num_key_value_heads
self.torch_dtype = torch_dtype
self.causal_attention = causal_attention
self.attn_adapter_config = attn_adapter_config
self.mlp_adapter_config = mlp_adapter_config
self.bias_name = bias_name
self.transformers_version = transformers_version
self.use_cache = use_cache
self.vocab_size = vocab_size
self.mlp_bias = mlp_bias
self.attention_bias = attention_bias
self.tie_word_embeddings = tie_word_embeddings
self.attention_dropout = attention_dropout
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.embedding_head_out = embedding_head_out
self.pooling_method = pooling_method
self.lora_config = lora_config
self._attn_implementation = _attn_implementation
self.layer_norm_epsilon = layer_norm_epsilon
def to_dict(self):
output = super(PhariaConfig, self).to_dict()
if self.mlp_adapter_config is not None:
output["mlp_adapter_config"] = self.mlp_adapter_config.to_dict()
if self.attn_adapter_config is not None:
output["attn_adapter_config"] = self.attn_adapter_config.to_dict()
return output
@classmethod
def from_dict(cls, config_dict, **kwargs):
if 'use_cache' in config_dict:
del config_dict['use_cache']
if 'mlp_adapter_config' in config_dict and config_dict["mlp_adapter_config"] is not None:
config_dict["mlp_adapter_config"] = PhariaAdapterConfig.from_dict(config_dict["mlp_adapter_config"])
if 'attn_adapter_config' in config_dict and config_dict["attn_adapter_config"] is not None:
config_dict["attn_adapter_config"] = PhariaAdapterConfig.from_dict(config_dict["attn_adapter_config"])
return cls(**config_dict, **kwargs)
def reshape_complex_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
ndim = x.ndim
assert 0 <= 1 < ndim
assert freqs_cis.shape[0] == x.shape[1]
assert freqs_cis.shape[1] == x.shape[-1]
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return freqs_cis.view(*shape)
def precompute_freqs_cis(
dim: int,
end: int,
theta: float,
device: torch.device,
) -> torch.Tensor:
theta = float(theta)
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2, device=device)[: (dim // 2)].float() / dim)).to(device)
t = torch.arange(end, device=device) # type: ignore
freqs = torch.outer(t, freqs).float() # type: ignore
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
return freqs_cis.to(device)
def apply_complex_rotary_emb(
xq: torch.Tensor,
xk: torch.Tensor,
freqs_cis: torch.Tensor,
query_position_ids: Optional[torch.Tensor],
key_position_ids: Optional[torch.Tensor],
) -> tuple[torch.Tensor, torch.Tensor]:
xq_complex = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
xk_complex = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
if query_position_ids is None:
freqs_cis_q = reshape_complex_for_broadcast(freqs_cis, xq_complex)
else:
freqs_cis_q = vector_gather_complex(freqs_cis, query_position_ids)
if key_position_ids is None:
freqs_cis_k = reshape_complex_for_broadcast(freqs_cis, xq_complex)
else:
freqs_cis_k = vector_gather_complex(freqs_cis, key_position_ids)
xq_out = torch.view_as_real(xq_complex * freqs_cis_q).flatten(3)
xk_out = torch.view_as_real(xk_complex * freqs_cis_k).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)
class RotaryEmbeddingComplex(torch.nn.Module):
"""
Relative rotary position embedding based on
* RoFormer: Enhanced Transformer with Rotary Position Embedding (https://arxiv.org/abs/2104.09864)
* Rotary Embeddings: A Relative Revolution (https://blog.eleuther.ai/rotary-embeddings/)
"""
def __init__(
self,
config: RotaryConfig,
device: torch.device,
) -> None:
super().__init__()
assert config.dimensions > 1, "RotaryEmbedding cannot use `dim` == 1, this results in weird reshape errors"
freqs_cis = precompute_freqs_cis(
dim=config.dimensions,
end=config.max_seq_length,
theta=config.base,
device=device,
)
# Store real and imaginary in separate buffers for correct type casting.
self.freqs_cis_real = freqs_cis.real
self.freqs_cis_imag = freqs_cis.imag
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
query_position_ids: Optional[torch.Tensor] = None,
key_position_ids: Optional[torch.Tensor] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
query, key = apply_complex_rotary_emb(
xq=rearrange(query, "sq b nh hh -> b sq nh hh"),
xk=rearrange(key, "sq b nh hh -> b sq nh hh"),
freqs_cis=torch.complex(self.freqs_cis_real.float(), self.freqs_cis_imag.float()),
query_position_ids=query_position_ids,
key_position_ids=key_position_ids,
)
return rearrange(query, "b sq nh hh -> sq b nh hh"), rearrange(key, "b sq nh hh -> sq b nh hh")
def vector_gather(vectors: torch.Tensor, indices: torch.Tensor) -> torch.Tensor:
"""
Gathers (batched) vectors according to indices.
"""
vectors = repeat(vectors, "sq b nh d -> sq b B nh d", B=indices.shape[1]).squeeze(1)
indices = repeat(
indices,
"sq b -> sq b nh d",
nh=vectors.shape[-2],
d=vectors.shape[-1],
)
out = torch.gather(vectors, dim=0, index=indices)
return out
def vector_gather_complex(vectors: torch.Tensor, indices: torch.Tensor) -> torch.Tensor:
"""
Gathers (batched) vectors according to indices.
"""
vectors = repeat(vectors, "sq d -> sq B nh d", B=indices.shape[1], nh=1)
indices = repeat(
indices,
"sq b -> sq b nh d",
nh=1,
d=vectors.shape[-1],
)
out = torch.gather(vectors, dim=0, index=indices)
out = rearrange(out, "sq b nh hh -> b sq nh hh")
return out
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
bs, slen, n_kv_heads, head_dim = x.shape
if n_rep == 1:
return x
return (
x[:, :, :, None, :]
.expand(bs, slen, n_kv_heads, n_rep, head_dim)
.reshape(bs, slen, n_kv_heads * n_rep, head_dim)
)
class PhariaAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: PhariaConfig, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.attention_dropout = config.attention_dropout
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.is_causal = config.causal_attention
self.query_key_scaling_factor = 1 / (self.head_dim ** 0.5)
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = nn.Linear(
self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
self.hidden_size,
self.num_key_value_heads * self.head_dim,
bias=config.attention_bias,
)
self.v_proj = nn.Linear(
self.hidden_size,
self.num_key_value_heads * self.head_dim,
bias=config.attention_bias,
)
self.o_proj = nn.Linear(
self.hidden_size, self.hidden_size, bias=config.attention_bias
)
self._init_rope()
def _init_rope(self):
self.rotary_emb = RotaryEmbeddingComplex(
config=RotaryConfig(
dimensions=self.head_dim,
max_seq_length=self.max_position_embeddings,
base=self.rope_theta
),
device='cuda:0'
)
def prepare_query_key_value(
self,
hidden_states: torch.Tensor,
position_ids: torch.Tensor,
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
):
query_states = rearrange(self.q_proj(hidden_states), "b sq (np hn) -> sq b np hn", np=self.num_heads)
key_states = rearrange(self.k_proj(hidden_states), "b sq (np hn) -> sq b np hn", np=self.num_key_value_heads)
value_states = rearrange(self.v_proj(hidden_states), "b sq (np hn) -> sq b np hn", np=self.num_key_value_heads)
# cos, sin = self.rotary_emb(value_states, position_ids)
position_ids = rearrange(position_ids, 'b sq -> sq b')
query_states, key_states = self.rotary_emb(
query_states, key_states, query_position_ids=position_ids, key_position_ids=position_ids
)
if past_key_value is not None:
# cache_position needed for the static cache
cache_kwargs = {"cache_position": cache_position}
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, cache_kwargs
)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
return query_states, key_states, value_states
def forward (
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
softmax_in_fp32: Optional[bool] = False
):
bsz, _, _ = hidden_states.size()
query, key, value = self.prepare_query_key_value(
hidden_states,
position_ids=position_ids,
past_key_value=past_key_value,
cache_position=cache_position
)
seq_length, batch_size, _, head_dim = query.shape
query = rearrange(query, "sq bs nh hd -> sq (bs nh) hd")
key = rearrange(key, "sq bs nh hd -> sq (bs nh) hd")
value = rearrange(value, "sq bs nh hd -> sq (bs nh) hd")
matmul_result = torch.empty(
query.size(1),
query.size(0),
key.size(0),
dtype=query.dtype,
device=query.device,
)
# Raw attention scores. [b * np, s_q, s_k]
matmul_result = torch.baddbmm(
matmul_result,
query.transpose(0, 1), # [b * np, s_q, hn]
key.transpose(0, 1).transpose(1, 2), # [b * np, hn, s_k]
beta=0.0,
alpha=self.query_key_scaling_factor,
)
attention_scores = rearrange(matmul_result, "(b n) s_q s_k -> b n s_q s_k", b=batch_size)
if softmax_in_fp32 and attention_scores.dtype != torch.float32:
input_dtype = attention_scores.dtype
attention_scores = attention_scores.float()
else:
input_dtype = None
causal_mask = torch.triu(
torch.ones(seq_length, seq_length, device=query.device),
diagonal=1
).bool()
attention_scores.masked_fill_(causal_mask.to(attention_scores.device), -10000.0)
probs = torch.nn.functional.softmax(attention_scores, dim=-1)
if softmax_in_fp32 and input_dtype is not None:
probs = probs.to(input_dtype)
probs = rearrange(probs, "b n s_q s_k -> (b n) s_q s_k")
hidden_state = torch.bmm(probs.to(dtype=value.dtype), value.transpose(0, 1))
attn_output = rearrange(hidden_state, "(b np) sq hn -> b sq (np hn)", b=bsz)
attn_output = nn.functional.linear(attn_output, self.o_proj.weight, None) + self.o_proj.bias
return attn_output, _, past_key_value
class PhariaFlashAttention2(PhariaAttention):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
@staticmethod
def get_max_seq_length(cumulative_seq_lengths: torch.Tensor) -> int:
return int((cumulative_seq_lengths[1:] - cumulative_seq_lengths[:-1]).max().item())
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
softmax_in_fp32: Optional[bool] = False
):
assert flash_attn_func is not None, "Please install Flash Attention via optimization requirements"
query, key, value = self.prepare_query_key_value(hidden_states, position_ids=position_ids)
batch_size = query.shape[1]
# reshape into format expected by flash attention [sq, b, np, hn] => [b, sq, np, hn]
query = rearrange(query, "s_q b n h -> b s_q n h")
key = rearrange(key, "s_k b n h -> b s_k n h")
value = rearrange(value, "s_k b n h -> b s_k n h")
attention_output = flash_attn_func(
q=query,
k=key,
v=value,
causal=self.is_causal,
softmax_scale=self.query_key_scaling_factor
)
attention_output = rearrange(attention_output, "b sq np hn -> b sq (np hn)", b=batch_size)
attention_output = nn.functional.linear(attention_output, self.o_proj.weight, None) + self.o_proj.bias
if not output_attentions:
attn_weights = None
return attention_output, attn_weights, past_key_value
ATTN_IMPLEMENTATION = {
'flash_attention_2': PhariaFlashAttention2,
'sdpa': PhariaAttention,
'eager': PhariaAttention
}
class PhariaMLP(nn.Module):
def __init__(self, config, layer_idx: int):
super().__init__()
self.layer_idx = layer_idx
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.up_proj = nn.Linear(
self.hidden_size, self.intermediate_size, bias=config.mlp_bias
)
self.down_proj = nn.Linear(
self.intermediate_size, self.hidden_size, bias=config.mlp_bias
)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
x = self.up_proj(x)
x = self.act_fn(x)
if not self.down_proj.bias is None:
# Scaling implements this with bias being seperately added. To match numerics we change this also
o = nn.functional.linear(x, self.down_proj.weight, None) + self.down_proj.bias
else:
o = self.down_proj(x)
return o
class PhariaDecoderLayer(nn.Module):
def __init__(self, config: PhariaConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = ATTN_IMPLEMENTATION[config._attn_implementation](config=config, layer_idx=layer_idx)
self.post_mlp_adapter = None
if config.mlp_adapter_config:
self.post_mlp_adapter = PhariaMLP(config.mlp_adapter_config, layer_idx=layer_idx)
self.post_attn_adapter = None
if config.attn_adapter_config:
self.post_attn_adapter = PhariaMLP(config.attn_adapter_config, layer_idx=layer_idx)
self.mlp = PhariaMLP(config, layer_idx=layer_idx)
self.input_layernorm = nn.LayerNorm(config.hidden_size)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size)
self.layer_idx = layer_idx
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = residual + hidden_states
if self.post_attn_adapter:
hidden_states = self.post_attn_adapter(hidden_states) + hidden_states
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
if self.post_mlp_adapter:
hidden_states = self.post_mlp_adapter(hidden_states) + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
class PhariaPreTrainedModel(PreTrainedModel):
config_class = PhariaConfig
base_model_prefix = "model"
supports_gradient_checkpointing = False
_no_split_modules = ["PhariaDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
_supports_static_cache = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class PhariaModel(PhariaPreTrainedModel):
config_class = PhariaConfig
def __init__(self, config: PhariaConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(
config.vocab_size, config.hidden_size, self.padding_idx
)
self.layers = nn.ModuleList(
[
PhariaDecoderLayer(config, layer_idx)
for layer_idx in range(config.num_hidden_layers)
]
)
self.norm = nn.LayerNorm(config.hidden_size)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
)
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
return_legacy_cache = False
if use_cache and not isinstance(
past_key_values, Cache
): # kept for BC (non `Cache` `past_key_values` inputs)
return_legacy_cache = True
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
if cache_position is None:
past_seen_tokens = (
past_key_values.get_seq_length() if past_key_values is not None else 0
)
cache_position = torch.arange(
past_seen_tokens,
past_seen_tokens + inputs_embeds.shape[1],
device=inputs_embeds.device,
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
if self.config.causal_attention:
mask = self._update_causal_mask(
attention_mask,
inputs_embeds,
cache_position,
past_key_values,
output_attentions,
)
else:
mask = self._create_bidirectional_attention_mask(
attention_mask,
inputs_embeds.dtype
)
# embed positions
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = decoder_layer(
hidden_states,
attention_mask=mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if return_legacy_cache:
next_cache = next_cache.to_legacy_cache()
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def _create_bidirectional_attention_mask(self, attention_mask: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
bidirectional_mask = attention_mask.unsqueeze(1) * attention_mask.unsqueeze(2).to(dtype)
bidirectional_mask = 1 - bidirectional_mask # flip
dtype_min_value = torch.finfo(dtype).min
attention_mask = bidirectional_mask.masked_fill(bidirectional_mask == 1, dtype_min_value)
return attention_mask
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = (
past_key_values.get_seq_length() if past_key_values is not None else 0
)
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if (
self.config._attn_implementation == "sdpa"
and not using_static_cache
and not output_attentions
):
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_length()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
if attention_mask is not None and attention_mask.dim() == 4:
# in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
if attention_mask.max() != 0:
raise ValueError(
"Custom 4D attention mask should be passed in inverted form with max==0`"
)
causal_mask = attention_mask
else:
causal_mask = torch.full(
(sequence_length, target_length),
fill_value=min_dtype,
dtype=dtype,
device=device,
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(
target_length, device=device
) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(
input_tensor.shape[0], 1, -1, -1
)
if attention_mask is not None:
causal_mask = (
causal_mask.clone()
) # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = (
causal_mask[:, :, :, :mask_length]
+ attention_mask[:, None, None, :]
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[
:, :, :, :mask_length
].masked_fill(padding_mask, min_dtype)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
causal_mask = AttentionMaskConverter._unmask_unattended(
causal_mask, min_dtype
)
return causal_mask
class Embeddinghead(torch.nn.Module):
def __init__(
self,
pooling_method: str
):
super().__init__()
self.pooling_method = pooling_method
def forward(self, hidden_state: torch.Tensor, attention_mask: torch.Tensor = None) -> torch.Tensor:
"""
Args:
hidden_state: [b, n, d]
attention_mask: [b, n]
"""
hidden_state = hidden_state.to(attention_mask.device)
if self.pooling_method == 'cls':
embedding = hidden_state[:, 0]
elif self.pooling_method == 'lasttoken':
b, n, d = hidden_state.size()
reversed_mask = torch.flip(attention_mask, dims=(1,))
argmax_reverse = torch.argmax(reversed_mask, dim=1, keepdim=False)
gather_indices = attention_mask.size(1) - argmax_reverse - 1
gather_indices = torch.clamp(gather_indices, min=0)
gather_indices = gather_indices.unsqueeze(-1).repeat(1, d)
gather_indices = gather_indices.unsqueeze(1)
assert gather_indices.shape == (b, 1, d)
input_mask_expanded = attention_mask.unsqueeze(-1).expand((b, n, d)).float()
embedding = torch.gather(hidden_state * input_mask_expanded, 1, gather_indices).squeeze(dim=1)
elif self.pooling_method in ['mean', 'weighted_mean']:
if self.pooling_method == 'weighted_mean':
attention_mask *= attention_mask.cumsum(dim=1)
s = torch.sum(hidden_state * attention_mask.unsqueeze(-1).float(), dim=1)
d = attention_mask.sum(dim=1, keepdim=True).float()
embedding = s / d
else: raise NotImplementedError(f"Unknown pooling method: {self.pooling_method}")
return embedding
class PhariaForEmbedding(PhariaPreTrainedModel):
def __init__(self, config, tokenizer):
super().__init__(config)
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
self._use_sdpa = config._attn_implementation == "sdpa"
self.model = PhariaModel(config)
self.tokenizer = tokenizer
self.tokenizer.pad_token_id = 1
self.embedding_head = Embeddinghead(pooling_method=self.config.pooling_method)
def encode_queries(self, queries: Union[List[str], str], **kwargs) -> np.ndarray:
"""Used for encoding the queries of retrieval or reranking tasks"""
return self.encode(queries, **kwargs)
def encode_corpus(self, corpus: Union[List[str], str, List[Dict[str, str]]], **kwargs) -> np.ndarray:
"""Used for encoding the corpus of retrieval tasks"""
if isinstance(corpus, dict):
corpus = [corpus]
if isinstance(corpus, list) and isinstance(corpus[0], dict):
corpus = [
doc["text"] for doc in corpus
]
return self.encode(corpus, **kwargs)
@torch.no_grad()
def encode(
self,
sentences: Union[List[str], str],
batch_size: int = 256,
max_length: int = 512,
instruction: str = "",
user_token: str = "<|start_header_id|>user<|end_header_id|>",
embed_instruction: bool = False,
embed_eos_token: str = "\n<|embed|>\n",
convert_to_tensor: bool = False,
add_special_tokens: bool = True,
**kwargs,
) -> np.ndarray:
input_was_string = False
if isinstance(sentences, str):
sentences = [sentences]
input_was_string = True
all_embeddings, all_kv_caches = [], []
for start_index in tqdm(range(0, len(sentences), batch_size), desc="Batches", disable=len(sentences)<256):
sentences_batch = [
user_token + instruction + embed_eos_token + s for s in sentences[start_index:start_index + batch_size]
]
# This will prepend the bos token if the tokenizer has `add_bos_token=True`
inputs = self.tokenizer(
sentences_batch,
padding=True,
truncation=True,
return_tensors='pt',
max_length=max_length,
add_special_tokens=add_special_tokens,
).to(self.device)
last_hidden_state = self.model(inputs['input_ids'])['last_hidden_state']
if ("mean" in self.embedding_head.pooling_method) and not embed_instruction:
instruct_with_special_tokens = user_token + instruction + embed_eos_token
# Remove instruction tokens from the embeddings by masking them
instruction_tokens = self.tokenizer(
instruct_with_special_tokens,
padding=False,
truncation=True,
max_length=max_length,
add_special_tokens=add_special_tokens,
)["input_ids"]
inputs['attention_mask'][:, :len(instruction_tokens)] = 0
embeddings = self.embedding_head(last_hidden_state, inputs['attention_mask'])
if convert_to_tensor:
all_embeddings.append(embeddings)
else:
# NumPy does not support bfloat16
all_embeddings.append(embeddings.cpu().to(torch.float32).numpy())
all_embeddings = (
torch.cat(all_embeddings, dim=0) if convert_to_tensor else np.concatenate(all_embeddings, axis=0)
)
if input_was_string:
all_embeddings = all_embeddings[0]
return all_embeddings
# registration for Autoconfig and auto class
#AutoConfig.register(PHARIAEMBED_TYPE, PhariaConfig)
#PhariaConfig.register_for_auto_class()
# registration for AutoModel and auto class
AutoModel.register(PhariaConfig, PhariaForEmbedding)
PhariaForEmbedding.register_for_auto_class("AutoModel")
|