mp
First commit updated Pharia4608 HF model
dbcfe2a
raw
history blame
38.3 kB
# we don't want to support mypy for this file for now
# type: ignore
import numpy as np
from typing import List, Optional, Tuple, Union, Dict
from tqdm import tqdm
from einops import rearrange, repeat
import torch
from torch import nn
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
try:
from flash_attn.flash_attn_interface import flash_attn_func
except Exception as e:
print(
f"Could not import flash attention. "
)
flash_attn_func = None
class RotaryConfig():
def __init__(
self,
dimensions: int = 0,
base: int = 10000,
max_seq_length: int = 2048
):
self.dimensions = dimensions
self.base = base
self.max_seq_length = max_seq_length
class PhariaAdapterConfig:
def __init__(
self,
hidden_size: int,
intermediate_size: int,
mlp_bias: bool,
hidden_act: str
):
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.mlp_bias = mlp_bias
self.hidden_act = hidden_act
def to_dict(self):
return {
"hidden_size": self.hidden_size,
"intermediate_size": self.intermediate_size,
"mlp_bias": self.mlp_bias,
"hidden_act": self.hidden_act,
}
@classmethod
def from_dict(cls, config_dict):
return cls(**config_dict)
class PhariaConfig(PretrainedConfig):
def __init__(
self,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
hidden_act="gelu",
hidden_size=512,
bias_name=None,
initializer_range=0.02,
intermediate_size=2048,
max_position_embeddings=8192,
model_type="pharia-v2",
num_attention_heads=4,
num_hidden_layers=4,
num_key_value_heads=2,
torch_dtype="bfloat16",
transformers_version="4.31.0.dev0",
use_cache=True,
vocab_size=128000,
mlp_bias=True,
attention_bias=True,
tie_word_embeddings=False,
attention_dropout=0.0,
causal_attention=True,
rope_theta=1000000, # rotary_embeddingbase,
rope_scaling=None,
mlp_adapter_config=None,
attn_adapter_config=None,
_attn_implementation='eager',
embedding_head_out=1024,
lora_config=None,
pooling_method=None,
layer_norm_epsilon=1e-05,
**kwargs,
):
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.hidden_act = hidden_act
self.hidden_size = hidden_size
self.initializer_range = initializer_range
self.intermediate_size = intermediate_size
self.max_position_embeddings = max_position_embeddings
self.model_type = model_type
self.num_attention_heads = num_attention_heads
self.num_hidden_layers = num_hidden_layers
self.num_key_value_heads = num_key_value_heads
self.torch_dtype = torch_dtype
self.causal_attention = causal_attention
self.attn_adapter_config = attn_adapter_config
self.mlp_adapter_config = mlp_adapter_config
self.bias_name = bias_name
self.transformers_version = transformers_version
self.use_cache = use_cache
self.vocab_size = vocab_size
self.mlp_bias = mlp_bias
self.attention_bias = attention_bias
self.tie_word_embeddings = tie_word_embeddings
self.attention_dropout = attention_dropout
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.embedding_head_out = embedding_head_out
self.pooling_method = pooling_method
self.lora_config = lora_config
self._attn_implementation = _attn_implementation
self.layer_norm_epsilon = layer_norm_epsilon
def to_dict(self):
output = super(PhariaConfig, self).to_dict()
if self.mlp_adapter_config is not None:
output["mlp_adapter_config"] = self.mlp_adapter_config.to_dict()
if self.attn_adapter_config is not None:
output["attn_adapter_config"] = self.attn_adapter_config.to_dict()
return output
@classmethod
def from_dict(cls, config_dict, **kwargs):
if 'use_cache' in config_dict:
del config_dict['use_cache']
if 'mlp_adapter_config' in config_dict and config_dict["mlp_adapter_config"] is not None:
config_dict["mlp_adapter_config"] = PhariaAdapterConfig.from_dict(config_dict["mlp_adapter_config"])
if 'attn_adapter_config' in config_dict and config_dict["attn_adapter_config"] is not None:
config_dict["attn_adapter_config"] = PhariaAdapterConfig.from_dict(config_dict["attn_adapter_config"])
return cls(**config_dict, **kwargs)
def reshape_complex_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
ndim = x.ndim
assert 0 <= 1 < ndim
assert freqs_cis.shape[0] == x.shape[1]
assert freqs_cis.shape[1] == x.shape[-1]
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return freqs_cis.view(*shape)
def precompute_freqs_cis(
dim: int,
end: int,
theta: float,
device: torch.device,
) -> torch.Tensor:
theta = float(theta)
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2, device=device)[: (dim // 2)].float() / dim)).to(device)
t = torch.arange(end, device=device) # type: ignore
freqs = torch.outer(t, freqs).float() # type: ignore
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
return freqs_cis.to(device)
def apply_complex_rotary_emb(
xq: torch.Tensor,
xk: torch.Tensor,
freqs_cis: torch.Tensor,
query_position_ids: Optional[torch.Tensor],
key_position_ids: Optional[torch.Tensor],
) -> tuple[torch.Tensor, torch.Tensor]:
xq_complex = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
xk_complex = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
if query_position_ids is None:
freqs_cis_q = reshape_complex_for_broadcast(freqs_cis, xq_complex)
else:
freqs_cis_q = vector_gather_complex(freqs_cis, query_position_ids)
if key_position_ids is None:
freqs_cis_k = reshape_complex_for_broadcast(freqs_cis, xq_complex)
else:
freqs_cis_k = vector_gather_complex(freqs_cis, key_position_ids)
xq_out = torch.view_as_real(xq_complex * freqs_cis_q).flatten(3)
xk_out = torch.view_as_real(xk_complex * freqs_cis_k).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)
class RotaryEmbeddingComplex(torch.nn.Module):
"""
Relative rotary position embedding based on
* RoFormer: Enhanced Transformer with Rotary Position Embedding (https://arxiv.org/abs/2104.09864)
* Rotary Embeddings: A Relative Revolution (https://blog.eleuther.ai/rotary-embeddings/)
"""
def __init__(
self,
config: RotaryConfig,
device: torch.device,
) -> None:
super().__init__()
assert config.dimensions > 1, "RotaryEmbedding cannot use `dim` == 1, this results in weird reshape errors"
freqs_cis = precompute_freqs_cis(
dim=config.dimensions,
end=config.max_seq_length,
theta=config.base,
device=device,
)
# Store real and imaginary in separate buffers for correct type casting.
self.freqs_cis_real = freqs_cis.real
self.freqs_cis_imag = freqs_cis.imag
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
query_position_ids: Optional[torch.Tensor] = None,
key_position_ids: Optional[torch.Tensor] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
query, key = apply_complex_rotary_emb(
xq=rearrange(query, "sq b nh hh -> b sq nh hh"),
xk=rearrange(key, "sq b nh hh -> b sq nh hh"),
freqs_cis=torch.complex(self.freqs_cis_real.float(), self.freqs_cis_imag.float()),
query_position_ids=query_position_ids,
key_position_ids=key_position_ids,
)
return rearrange(query, "b sq nh hh -> sq b nh hh"), rearrange(key, "b sq nh hh -> sq b nh hh")
def vector_gather(vectors: torch.Tensor, indices: torch.Tensor) -> torch.Tensor:
"""
Gathers (batched) vectors according to indices.
"""
vectors = repeat(vectors, "sq b nh d -> sq b B nh d", B=indices.shape[1]).squeeze(1)
indices = repeat(
indices,
"sq b -> sq b nh d",
nh=vectors.shape[-2],
d=vectors.shape[-1],
)
out = torch.gather(vectors, dim=0, index=indices)
return out
def vector_gather_complex(vectors: torch.Tensor, indices: torch.Tensor) -> torch.Tensor:
"""
Gathers (batched) vectors according to indices.
"""
vectors = repeat(vectors, "sq d -> sq B nh d", B=indices.shape[1], nh=1)
indices = repeat(
indices,
"sq b -> sq b nh d",
nh=1,
d=vectors.shape[-1],
)
out = torch.gather(vectors, dim=0, index=indices)
out = rearrange(out, "sq b nh hh -> b sq nh hh")
return out
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
bs, slen, n_kv_heads, head_dim = x.shape
if n_rep == 1:
return x
return (
x[:, :, :, None, :]
.expand(bs, slen, n_kv_heads, n_rep, head_dim)
.reshape(bs, slen, n_kv_heads * n_rep, head_dim)
)
class PhariaAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: PhariaConfig, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.attention_dropout = config.attention_dropout
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.is_causal = config.causal_attention
self.query_key_scaling_factor = 1 / (self.head_dim ** 0.5)
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = nn.Linear(
self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
self.hidden_size,
self.num_key_value_heads * self.head_dim,
bias=config.attention_bias,
)
self.v_proj = nn.Linear(
self.hidden_size,
self.num_key_value_heads * self.head_dim,
bias=config.attention_bias,
)
self.o_proj = nn.Linear(
self.hidden_size, self.hidden_size, bias=config.attention_bias
)
self._init_rope()
def _init_rope(self):
self.rotary_emb = RotaryEmbeddingComplex(
config=RotaryConfig(
dimensions=self.head_dim,
max_seq_length=self.max_position_embeddings,
base=self.rope_theta
),
device='cuda:0'
)
def prepare_query_key_value(
self,
hidden_states: torch.Tensor,
position_ids: torch.Tensor,
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
):
query_states = rearrange(self.q_proj(hidden_states), "b sq (np hn) -> sq b np hn", np=self.num_heads)
key_states = rearrange(self.k_proj(hidden_states), "b sq (np hn) -> sq b np hn", np=self.num_key_value_heads)
value_states = rearrange(self.v_proj(hidden_states), "b sq (np hn) -> sq b np hn", np=self.num_key_value_heads)
# cos, sin = self.rotary_emb(value_states, position_ids)
position_ids = rearrange(position_ids, 'b sq -> sq b')
query_states, key_states = self.rotary_emb(
query_states, key_states, query_position_ids=position_ids, key_position_ids=position_ids
)
if past_key_value is not None:
# cache_position needed for the static cache
cache_kwargs = {"cache_position": cache_position}
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, cache_kwargs
)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
return query_states, key_states, value_states
def forward (
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
softmax_in_fp32: Optional[bool] = False
):
bsz, _, _ = hidden_states.size()
query, key, value = self.prepare_query_key_value(
hidden_states,
position_ids=position_ids,
past_key_value=past_key_value,
cache_position=cache_position
)
seq_length, batch_size, _, head_dim = query.shape
query = rearrange(query, "sq bs nh hd -> sq (bs nh) hd")
key = rearrange(key, "sq bs nh hd -> sq (bs nh) hd")
value = rearrange(value, "sq bs nh hd -> sq (bs nh) hd")
matmul_result = torch.empty(
query.size(1),
query.size(0),
key.size(0),
dtype=query.dtype,
device=query.device,
)
# Raw attention scores. [b * np, s_q, s_k]
matmul_result = torch.baddbmm(
matmul_result,
query.transpose(0, 1), # [b * np, s_q, hn]
key.transpose(0, 1).transpose(1, 2), # [b * np, hn, s_k]
beta=0.0,
alpha=self.query_key_scaling_factor,
)
attention_scores = rearrange(matmul_result, "(b n) s_q s_k -> b n s_q s_k", b=batch_size)
if softmax_in_fp32 and attention_scores.dtype != torch.float32:
input_dtype = attention_scores.dtype
attention_scores = attention_scores.float()
else:
input_dtype = None
causal_mask = torch.triu(
torch.ones(seq_length, seq_length, device=query.device),
diagonal=1
).bool()
attention_scores.masked_fill_(causal_mask.to(attention_scores.device), -10000.0)
probs = torch.nn.functional.softmax(attention_scores, dim=-1)
if softmax_in_fp32 and input_dtype is not None:
probs = probs.to(input_dtype)
probs = rearrange(probs, "b n s_q s_k -> (b n) s_q s_k")
hidden_state = torch.bmm(probs.to(dtype=value.dtype), value.transpose(0, 1))
attn_output = rearrange(hidden_state, "(b np) sq hn -> b sq (np hn)", b=bsz)
attn_output = nn.functional.linear(attn_output, self.o_proj.weight, None) + self.o_proj.bias
return attn_output, _, past_key_value
class PhariaFlashAttention2(PhariaAttention):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
@staticmethod
def get_max_seq_length(cumulative_seq_lengths: torch.Tensor) -> int:
return int((cumulative_seq_lengths[1:] - cumulative_seq_lengths[:-1]).max().item())
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
softmax_in_fp32: Optional[bool] = False
):
assert flash_attn_func is not None, "Please install Flash Attention via optimization requirements"
query, key, value = self.prepare_query_key_value(hidden_states, position_ids=position_ids)
batch_size = query.shape[1]
# reshape into format expected by flash attention [sq, b, np, hn] => [b, sq, np, hn]
query = rearrange(query, "s_q b n h -> b s_q n h")
key = rearrange(key, "s_k b n h -> b s_k n h")
value = rearrange(value, "s_k b n h -> b s_k n h")
attention_output = flash_attn_func(
q=query,
k=key,
v=value,
causal=self.is_causal,
softmax_scale=self.query_key_scaling_factor
)
attention_output = rearrange(attention_output, "b sq np hn -> b sq (np hn)", b=batch_size)
attention_output = nn.functional.linear(attention_output, self.o_proj.weight, None) + self.o_proj.bias
if not output_attentions:
attn_weights = None
return attention_output, attn_weights, past_key_value
ATTN_IMPLEMENTATION = {
'flash_attention_2': PhariaFlashAttention2,
'sdpa': PhariaAttention,
'eager': PhariaAttention
}
class PhariaMLP(nn.Module):
def __init__(self, config, layer_idx: int):
super().__init__()
self.layer_idx = layer_idx
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.up_proj = nn.Linear(
self.hidden_size, self.intermediate_size, bias=config.mlp_bias
)
self.down_proj = nn.Linear(
self.intermediate_size, self.hidden_size, bias=config.mlp_bias
)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
x = self.up_proj(x)
x = self.act_fn(x)
if not self.down_proj.bias is None:
# Scaling implements this with bias being seperately added. To match numerics we change this also
o = nn.functional.linear(x, self.down_proj.weight, None) + self.down_proj.bias
else:
o = self.down_proj(x)
return o
class PhariaDecoderLayer(nn.Module):
def __init__(self, config: PhariaConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = ATTN_IMPLEMENTATION[config._attn_implementation](config=config, layer_idx=layer_idx)
self.post_mlp_adapter = None
if config.mlp_adapter_config:
self.post_mlp_adapter = PhariaMLP(config.mlp_adapter_config, layer_idx=layer_idx)
self.post_attn_adapter = None
if config.attn_adapter_config:
self.post_attn_adapter = PhariaMLP(config.attn_adapter_config, layer_idx=layer_idx)
self.mlp = PhariaMLP(config, layer_idx=layer_idx)
self.input_layernorm = nn.LayerNorm(config.hidden_size)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size)
self.layer_idx = layer_idx
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = residual + hidden_states
if self.post_attn_adapter:
hidden_states = self.post_attn_adapter(hidden_states) + hidden_states
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
if self.post_mlp_adapter:
hidden_states = self.post_mlp_adapter(hidden_states) + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
class PhariaPreTrainedModel(PreTrainedModel):
config_class = PhariaConfig
base_model_prefix = "model"
supports_gradient_checkpointing = False
_no_split_modules = ["PhariaDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
_supports_static_cache = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class PhariaModel(PhariaPreTrainedModel):
config_class = PhariaConfig
def __init__(self, config: PhariaConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(
config.vocab_size, config.hidden_size, self.padding_idx
)
self.layers = nn.ModuleList(
[
PhariaDecoderLayer(config, layer_idx)
for layer_idx in range(config.num_hidden_layers)
]
)
self.norm = nn.LayerNorm(config.hidden_size)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
)
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
return_legacy_cache = False
if use_cache and not isinstance(
past_key_values, Cache
): # kept for BC (non `Cache` `past_key_values` inputs)
return_legacy_cache = True
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
if cache_position is None:
past_seen_tokens = (
past_key_values.get_seq_length() if past_key_values is not None else 0
)
cache_position = torch.arange(
past_seen_tokens,
past_seen_tokens + inputs_embeds.shape[1],
device=inputs_embeds.device,
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
if self.config.causal_attention:
mask = self._update_causal_mask(
attention_mask,
inputs_embeds,
cache_position,
past_key_values,
output_attentions,
)
else:
mask = self._create_bidirectional_attention_mask(
attention_mask,
inputs_embeds.dtype
)
# embed positions
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = decoder_layer(
hidden_states,
attention_mask=mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if return_legacy_cache:
next_cache = next_cache.to_legacy_cache()
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def _create_bidirectional_attention_mask(self, attention_mask: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
bidirectional_mask = attention_mask.unsqueeze(1) * attention_mask.unsqueeze(2).to(dtype)
bidirectional_mask = 1 - bidirectional_mask # flip
dtype_min_value = torch.finfo(dtype).min
attention_mask = bidirectional_mask.masked_fill(bidirectional_mask == 1, dtype_min_value)
return attention_mask
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = (
past_key_values.get_seq_length() if past_key_values is not None else 0
)
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if (
self.config._attn_implementation == "sdpa"
and not using_static_cache
and not output_attentions
):
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_length()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
if attention_mask is not None and attention_mask.dim() == 4:
# in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
if attention_mask.max() != 0:
raise ValueError(
"Custom 4D attention mask should be passed in inverted form with max==0`"
)
causal_mask = attention_mask
else:
causal_mask = torch.full(
(sequence_length, target_length),
fill_value=min_dtype,
dtype=dtype,
device=device,
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(
target_length, device=device
) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(
input_tensor.shape[0], 1, -1, -1
)
if attention_mask is not None:
causal_mask = (
causal_mask.clone()
) # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = (
causal_mask[:, :, :, :mask_length]
+ attention_mask[:, None, None, :]
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[
:, :, :, :mask_length
].masked_fill(padding_mask, min_dtype)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
causal_mask = AttentionMaskConverter._unmask_unattended(
causal_mask, min_dtype
)
return causal_mask
class Embeddinghead(torch.nn.Module):
def __init__(
self,
pooling_method: str
):
super().__init__()
self.pooling_method = pooling_method
def forward(self, hidden_state: torch.Tensor, attention_mask: torch.Tensor = None) -> torch.Tensor:
"""
Args:
hidden_state: [b, n, d]
attention_mask: [b, n]
"""
hidden_state = hidden_state.to(attention_mask.device)
if self.pooling_method == 'cls':
embedding = hidden_state[:, 0]
elif self.pooling_method == 'lasttoken':
b, n, d = hidden_state.size()
reversed_mask = torch.flip(attention_mask, dims=(1,))
argmax_reverse = torch.argmax(reversed_mask, dim=1, keepdim=False)
gather_indices = attention_mask.size(1) - argmax_reverse - 1
gather_indices = torch.clamp(gather_indices, min=0)
gather_indices = gather_indices.unsqueeze(-1).repeat(1, d)
gather_indices = gather_indices.unsqueeze(1)
assert gather_indices.shape == (b, 1, d)
input_mask_expanded = attention_mask.unsqueeze(-1).expand((b, n, d)).float()
embedding = torch.gather(hidden_state * input_mask_expanded, 1, gather_indices).squeeze(dim=1)
elif self.pooling_method in ['mean', 'weighted_mean']:
if self.pooling_method == 'weighted_mean':
attention_mask *= attention_mask.cumsum(dim=1)
s = torch.sum(hidden_state * attention_mask.unsqueeze(-1).float(), dim=1)
d = attention_mask.sum(dim=1, keepdim=True).float()
embedding = s / d
else: raise NotImplementedError(f"Unknown pooling method: {self.pooling_method}")
return embedding
class PhariaForEmbedding(PhariaPreTrainedModel):
def __init__(self, config, tokenizer):
super().__init__(config)
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
self._use_sdpa = config._attn_implementation == "sdpa"
self.model = PhariaModel(config)
self.tokenizer = tokenizer
self.tokenizer.pad_token_id = 1
self.embedding_head = Embeddinghead(pooling_method=self.config.pooling_method)
def encode_queries(self, queries: Union[List[str], str], **kwargs) -> np.ndarray:
"""Used for encoding the queries of retrieval or reranking tasks"""
return self.encode(queries, **kwargs)
def encode_corpus(self, corpus: Union[List[str], str, List[Dict[str, str]]], **kwargs) -> np.ndarray:
"""Used for encoding the corpus of retrieval tasks"""
if isinstance(corpus, dict):
corpus = [corpus]
if isinstance(corpus, list) and isinstance(corpus[0], dict):
corpus = [
doc["text"] for doc in corpus
]
return self.encode(corpus, **kwargs)
@torch.no_grad()
def encode(
self,
sentences: Union[List[str], str],
batch_size: int = 256,
max_length: int = 512,
instruction: str = "",
user_token: str = "<|start_header_id|>user<|end_header_id|>",
embed_instruction: bool = False,
embed_eos_token: str = "\n<|embed|>\n",
convert_to_tensor: bool = False,
add_special_tokens: bool = True,
**kwargs,
) -> np.ndarray:
input_was_string = False
if isinstance(sentences, str):
sentences = [sentences]
input_was_string = True
all_embeddings, all_kv_caches = [], []
for start_index in tqdm(range(0, len(sentences), batch_size), desc="Batches", disable=len(sentences)<256):
sentences_batch = [
user_token + instruction + embed_eos_token + s for s in sentences[start_index:start_index + batch_size]
]
# This will prepend the bos token if the tokenizer has `add_bos_token=True`
inputs = self.tokenizer(
sentences_batch,
padding=True,
truncation=True,
return_tensors='pt',
max_length=max_length,
add_special_tokens=add_special_tokens,
).to(self.device)
last_hidden_state = self.model(inputs['input_ids'])['last_hidden_state']
if ("mean" in self.embedding_head.pooling_method) and not embed_instruction:
instruct_with_special_tokens = user_token + instruction + embed_eos_token
# Remove instruction tokens from the embeddings by masking them
instruction_tokens = self.tokenizer(
instruct_with_special_tokens,
padding=False,
truncation=True,
max_length=max_length,
add_special_tokens=add_special_tokens,
)["input_ids"]
inputs['attention_mask'][:, :len(instruction_tokens)] = 0
embeddings = self.embedding_head(last_hidden_state, inputs['attention_mask'])
if convert_to_tensor:
all_embeddings.append(embeddings)
else:
# NumPy does not support bfloat16
all_embeddings.append(embeddings.cpu().to(torch.float32).numpy())
all_embeddings = (
torch.cat(all_embeddings, dim=0) if convert_to_tensor else np.concatenate(all_embeddings, axis=0)
)
if input_was_string:
all_embeddings = all_embeddings[0]
return all_embeddings