ArturBaranowskiAA
commited on
Commit
•
e330373
1
Parent(s):
be6300b
Push Pharia-1-LLM-7B-control-safetensors
Browse files- LICENSE +31 -0
- README.md +9 -5
- config.json +31 -0
- configuration_pharia.py +62 -0
- generation_config.json +7 -0
- model-00001-of-00006.safetensors +3 -0
- model-00002-of-00006.safetensors +3 -0
- model-00003-of-00006.safetensors +3 -0
- model-00004-of-00006.safetensors +3 -0
- model-00005-of-00006.safetensors +3 -0
- model-00006-of-00006.safetensors +3 -0
- model.safetensors.index.json +443 -0
- modeling_pharia.py +870 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +0 -0
LICENSE
CHANGED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
The following applies to all files in this repository, unless otherwise noted:
|
2 |
+
|
3 |
+
Copyright (c) 2024 IPAI Aleph Alpha Research GmbH. All rights reserved.
|
4 |
+
|
5 |
+
This project is licensed under the terms of the Open Aleph License 1.0, available at
|
6 |
+
https://github.com/Aleph-Alpha/.github/blob/main/oal.pdf
|
7 |
+
|
8 |
+
---
|
9 |
+
Excerpt from the license text:
|
10 |
+
|
11 |
+
Subject to the terms and conditions of this License, the Licensor grants you a non-exclusive, worldwide,
|
12 |
+
non-transferable, non-sublicensable, and royalty-free limited right to use, copy, modify, distribute, make
|
13 |
+
otherwise publicly available, and reproduce the Works and Derivative Works under Licensor’s copyright,
|
14 |
+
for any Non-Commercial and Non-Administrative purpose.
|
15 |
+
You may not use, copy, modify, distribute, make otherwise publicly available, reproduce, or sublicense the
|
16 |
+
Works or Derivative Works except as expressly provided under and in accordance with this License.
|
17 |
+
Your rights granted under this License will automatically terminate if you fail to comply with any of the
|
18 |
+
terms of this License.
|
19 |
+
|
20 |
+
EXCEPT FOR DAMAGES CAUSED BY INTENT OR FRAUDULENTLY CONCEALED
|
21 |
+
DEFECTS, AND EXCEPT FOR DAMAGES RESULTING FROM BREACH OF ANY
|
22 |
+
WARRANTY OR GUARANTEE EXPRESSLY GIVEN BY LICENSOR IN THE OPEN ALEPH LICENSE,
|
23 |
+
IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY
|
24 |
+
DAMAGES ARISING OUT OF THE OPEN ALEPH LICENSE OR THE USE OF THE WORK. ANY
|
25 |
+
MANDATORY STATUTORY LIABILITY UNDER APPLICABLE LAW REMAINS
|
26 |
+
UNAFFECTED.
|
27 |
+
|
28 |
+
EXCEPT AS EXPRESSLY STATED IN THIS LICENSE OR REQUIRED BY APPLICABLE
|
29 |
+
LAW, THE WORKS ARE PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES
|
30 |
+
OF ANY KIND INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES REGARDING
|
31 |
+
THE CONTENTS, ACCURACY, OR FITNESS FOR A PARTICULAR PURPOSE.
|
README.md
CHANGED
@@ -1,5 +1,9 @@
|
|
1 |
-
---
|
2 |
-
license: other
|
3 |
-
license_name: open-aleph-license
|
4 |
-
license_link: LICENSE
|
5 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
license_name: open-aleph-license
|
4 |
+
license_link: LICENSE
|
5 |
+
library_name: transformers
|
6 |
+
pipeline_tag: text-generation
|
7 |
+
---
|
8 |
+
|
9 |
+
We provide a joint model card for `Pharia-1-LLM-7B-control` and `Pharia-1-LLM-control-aligned`. Find this model card [here](https://huggingface.co/Aleph-Alpha/Pharia-1-LLM-7B-control).
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"PhariaForCausalLM"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_pharia.PhariaConfig",
|
7 |
+
"AutoModelForCausalLM": "modeling_pharia.PhariaForCausalLM"
|
8 |
+
},
|
9 |
+
"model_type": "pharia-v1",
|
10 |
+
"attention_bias": true,
|
11 |
+
"attention_dropout": 0.0,
|
12 |
+
"eos_token_id": 0,
|
13 |
+
"bos_token_id": 127179,
|
14 |
+
"pad_token_id": 1,
|
15 |
+
"hidden_act": "gelu",
|
16 |
+
"hidden_size": 4608,
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 18432,
|
19 |
+
"max_position_embeddings": 8192,
|
20 |
+
"mlp_bias": true,
|
21 |
+
"num_attention_heads": 36,
|
22 |
+
"num_hidden_layers": 27,
|
23 |
+
"num_key_value_heads": 4,
|
24 |
+
"rope_scaling": null,
|
25 |
+
"rope_theta": 1000000,
|
26 |
+
"tie_word_embeddings": false,
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.44.2",
|
29 |
+
"use_cache": true,
|
30 |
+
"vocab_size": 128000
|
31 |
+
}
|
configuration_pharia.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.configuration_utils import PretrainedConfig
|
2 |
+
|
3 |
+
|
4 |
+
class PhariaConfig(PretrainedConfig):
|
5 |
+
model_type = "pharia-v1"
|
6 |
+
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
pad_token_id=None,
|
10 |
+
bos_token_id=1,
|
11 |
+
eos_token_id=2,
|
12 |
+
hidden_act="gelu",
|
13 |
+
hidden_size=512,
|
14 |
+
initializer_range=0.02,
|
15 |
+
intermediate_size=2048,
|
16 |
+
max_position_embeddings=8192,
|
17 |
+
model_type="pharia-v1",
|
18 |
+
num_attention_heads=4,
|
19 |
+
num_hidden_layers=4,
|
20 |
+
num_key_value_heads=2,
|
21 |
+
torch_dtype="bfloat16",
|
22 |
+
transformers_version="4.31.0.dev0",
|
23 |
+
use_cache=True,
|
24 |
+
vocab_size=128000,
|
25 |
+
mlp_bias=True,
|
26 |
+
attention_bias=True,
|
27 |
+
tie_word_embeddings=False,
|
28 |
+
attention_dropout=0.0,
|
29 |
+
rope_theta=1000000, # rotary_embeddingbase,
|
30 |
+
rope_scaling=None,
|
31 |
+
**kwargs,
|
32 |
+
):
|
33 |
+
super().__init__(
|
34 |
+
pad_token_id=pad_token_id,
|
35 |
+
bos_token_id=bos_token_id,
|
36 |
+
eos_token_id=eos_token_id,
|
37 |
+
tie_word_embeddings=tie_word_embeddings,
|
38 |
+
**kwargs,
|
39 |
+
)
|
40 |
+
|
41 |
+
self.pad_token_id = pad_token_id
|
42 |
+
self.bos_token_id = bos_token_id
|
43 |
+
self.eos_token_id = eos_token_id
|
44 |
+
self.hidden_act = hidden_act
|
45 |
+
self.hidden_size = hidden_size
|
46 |
+
self.initializer_range = initializer_range
|
47 |
+
self.intermediate_size = intermediate_size
|
48 |
+
self.max_position_embeddings = max_position_embeddings
|
49 |
+
self.model_type = model_type
|
50 |
+
self.num_attention_heads = num_attention_heads
|
51 |
+
self.num_hidden_layers = num_hidden_layers
|
52 |
+
self.num_key_value_heads = num_key_value_heads
|
53 |
+
self.torch_dtype = torch_dtype
|
54 |
+
self.transformers_version = transformers_version
|
55 |
+
self.use_cache = use_cache
|
56 |
+
self.vocab_size = vocab_size
|
57 |
+
self.mlp_bias = mlp_bias
|
58 |
+
self.attention_bias = attention_bias
|
59 |
+
self.tie_word_embeddings = tie_word_embeddings
|
60 |
+
self.attention_dropout = attention_dropout
|
61 |
+
self.rope_theta = rope_theta
|
62 |
+
self.rope_scaling = rope_scaling
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"eos_token_id": 0,
|
4 |
+
"bos_token_id": 127179,
|
5 |
+
"pad_token_id": 1,
|
6 |
+
"transformers_version": "4.44.2"
|
7 |
+
}
|
model-00001-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b3009a9aa25882572e6ba3f18f6f5563f70190698d38586619698f46c9309c90
|
3 |
+
size 4964584832
|
model-00002-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f560242d251889eda5a665773b925c1f3367cba42d6f29701ae2d1c0c55059d9
|
3 |
+
size 4870745896
|
model-00003-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bcccc898c4b052d47ea1c536c39a5e6a2d714ff67bca9367e464684b083c50f6
|
3 |
+
size 4870764856
|
model-00004-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16031b5dd1ce7e73159a97119b4d4fe7a70913108e6a40cdf9cefb9037f24767
|
3 |
+
size 4681960456
|
model-00005-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:001ef60478b026109e6f48b9973a682f6ee7c3ce8864eb8a70bac9ee188cb0b2
|
3 |
+
size 4870764888
|
model-00006-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:867fedb5b5780c6d2ec05c34c8b9e6dca337d201b72cc4a9dc0269404c157c86
|
3 |
+
size 3907406784
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 28166178816
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00006-of-00006.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00006.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.bias": "model-00001-of-00006.safetensors",
|
9 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
10 |
+
"model.layers.0.mlp.down_proj.bias": "model-00001-of-00006.safetensors",
|
11 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
12 |
+
"model.layers.0.mlp.up_proj.bias": "model-00001-of-00006.safetensors",
|
13 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
14 |
+
"model.layers.0.post_attention_layernorm.bias": "model-00001-of-00006.safetensors",
|
15 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
16 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
|
17 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
18 |
+
"model.layers.0.self_attn.o_proj.bias": "model-00001-of-00006.safetensors",
|
19 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
20 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
|
21 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
22 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
|
23 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
24 |
+
"model.layers.1.input_layernorm.bias": "model-00001-of-00006.safetensors",
|
25 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
26 |
+
"model.layers.1.mlp.down_proj.bias": "model-00001-of-00006.safetensors",
|
27 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
28 |
+
"model.layers.1.mlp.up_proj.bias": "model-00001-of-00006.safetensors",
|
29 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
30 |
+
"model.layers.1.post_attention_layernorm.bias": "model-00001-of-00006.safetensors",
|
31 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
32 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
|
33 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
34 |
+
"model.layers.1.self_attn.o_proj.bias": "model-00001-of-00006.safetensors",
|
35 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
36 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
|
37 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
38 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
|
39 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
40 |
+
"model.layers.10.input_layernorm.bias": "model-00003-of-00006.safetensors",
|
41 |
+
"model.layers.10.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
42 |
+
"model.layers.10.mlp.down_proj.bias": "model-00003-of-00006.safetensors",
|
43 |
+
"model.layers.10.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
44 |
+
"model.layers.10.mlp.up_proj.bias": "model-00003-of-00006.safetensors",
|
45 |
+
"model.layers.10.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
46 |
+
"model.layers.10.post_attention_layernorm.bias": "model-00003-of-00006.safetensors",
|
47 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
48 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
49 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
50 |
+
"model.layers.10.self_attn.o_proj.bias": "model-00003-of-00006.safetensors",
|
51 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
52 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
53 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
54 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
55 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
56 |
+
"model.layers.11.input_layernorm.bias": "model-00003-of-00006.safetensors",
|
57 |
+
"model.layers.11.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
58 |
+
"model.layers.11.mlp.down_proj.bias": "model-00003-of-00006.safetensors",
|
59 |
+
"model.layers.11.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
60 |
+
"model.layers.11.mlp.up_proj.bias": "model-00003-of-00006.safetensors",
|
61 |
+
"model.layers.11.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
62 |
+
"model.layers.11.post_attention_layernorm.bias": "model-00003-of-00006.safetensors",
|
63 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
64 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
65 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
66 |
+
"model.layers.11.self_attn.o_proj.bias": "model-00003-of-00006.safetensors",
|
67 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
68 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
69 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
70 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
71 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
72 |
+
"model.layers.12.input_layernorm.bias": "model-00003-of-00006.safetensors",
|
73 |
+
"model.layers.12.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
74 |
+
"model.layers.12.mlp.down_proj.bias": "model-00003-of-00006.safetensors",
|
75 |
+
"model.layers.12.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
76 |
+
"model.layers.12.mlp.up_proj.bias": "model-00003-of-00006.safetensors",
|
77 |
+
"model.layers.12.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
78 |
+
"model.layers.12.post_attention_layernorm.bias": "model-00003-of-00006.safetensors",
|
79 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
80 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
81 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
82 |
+
"model.layers.12.self_attn.o_proj.bias": "model-00003-of-00006.safetensors",
|
83 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
84 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
85 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
86 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
87 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
88 |
+
"model.layers.13.input_layernorm.bias": "model-00003-of-00006.safetensors",
|
89 |
+
"model.layers.13.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
90 |
+
"model.layers.13.mlp.down_proj.bias": "model-00003-of-00006.safetensors",
|
91 |
+
"model.layers.13.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
92 |
+
"model.layers.13.mlp.up_proj.bias": "model-00003-of-00006.safetensors",
|
93 |
+
"model.layers.13.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
94 |
+
"model.layers.13.post_attention_layernorm.bias": "model-00003-of-00006.safetensors",
|
95 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
96 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
97 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
98 |
+
"model.layers.13.self_attn.o_proj.bias": "model-00003-of-00006.safetensors",
|
99 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
100 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
101 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
102 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
103 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
104 |
+
"model.layers.14.input_layernorm.bias": "model-00004-of-00006.safetensors",
|
105 |
+
"model.layers.14.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
106 |
+
"model.layers.14.mlp.down_proj.bias": "model-00004-of-00006.safetensors",
|
107 |
+
"model.layers.14.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
108 |
+
"model.layers.14.mlp.up_proj.bias": "model-00004-of-00006.safetensors",
|
109 |
+
"model.layers.14.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
110 |
+
"model.layers.14.post_attention_layernorm.bias": "model-00004-of-00006.safetensors",
|
111 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
112 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
113 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
114 |
+
"model.layers.14.self_attn.o_proj.bias": "model-00003-of-00006.safetensors",
|
115 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
116 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
117 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
118 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
119 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
120 |
+
"model.layers.15.input_layernorm.bias": "model-00004-of-00006.safetensors",
|
121 |
+
"model.layers.15.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
122 |
+
"model.layers.15.mlp.down_proj.bias": "model-00004-of-00006.safetensors",
|
123 |
+
"model.layers.15.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
124 |
+
"model.layers.15.mlp.up_proj.bias": "model-00004-of-00006.safetensors",
|
125 |
+
"model.layers.15.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
126 |
+
"model.layers.15.post_attention_layernorm.bias": "model-00004-of-00006.safetensors",
|
127 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
128 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
129 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
130 |
+
"model.layers.15.self_attn.o_proj.bias": "model-00004-of-00006.safetensors",
|
131 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
132 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
133 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
134 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
135 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
136 |
+
"model.layers.16.input_layernorm.bias": "model-00004-of-00006.safetensors",
|
137 |
+
"model.layers.16.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
138 |
+
"model.layers.16.mlp.down_proj.bias": "model-00004-of-00006.safetensors",
|
139 |
+
"model.layers.16.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
140 |
+
"model.layers.16.mlp.up_proj.bias": "model-00004-of-00006.safetensors",
|
141 |
+
"model.layers.16.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
142 |
+
"model.layers.16.post_attention_layernorm.bias": "model-00004-of-00006.safetensors",
|
143 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
144 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
145 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
146 |
+
"model.layers.16.self_attn.o_proj.bias": "model-00004-of-00006.safetensors",
|
147 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
148 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
149 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
150 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
151 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
152 |
+
"model.layers.17.input_layernorm.bias": "model-00004-of-00006.safetensors",
|
153 |
+
"model.layers.17.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
154 |
+
"model.layers.17.mlp.down_proj.bias": "model-00004-of-00006.safetensors",
|
155 |
+
"model.layers.17.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
156 |
+
"model.layers.17.mlp.up_proj.bias": "model-00004-of-00006.safetensors",
|
157 |
+
"model.layers.17.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
158 |
+
"model.layers.17.post_attention_layernorm.bias": "model-00004-of-00006.safetensors",
|
159 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
160 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
161 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
162 |
+
"model.layers.17.self_attn.o_proj.bias": "model-00004-of-00006.safetensors",
|
163 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
164 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
165 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
166 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
167 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
168 |
+
"model.layers.18.input_layernorm.bias": "model-00004-of-00006.safetensors",
|
169 |
+
"model.layers.18.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
170 |
+
"model.layers.18.mlp.down_proj.bias": "model-00004-of-00006.safetensors",
|
171 |
+
"model.layers.18.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
172 |
+
"model.layers.18.mlp.up_proj.bias": "model-00004-of-00006.safetensors",
|
173 |
+
"model.layers.18.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
174 |
+
"model.layers.18.post_attention_layernorm.bias": "model-00004-of-00006.safetensors",
|
175 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
176 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
177 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
178 |
+
"model.layers.18.self_attn.o_proj.bias": "model-00004-of-00006.safetensors",
|
179 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
180 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
181 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
182 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
183 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
184 |
+
"model.layers.19.input_layernorm.bias": "model-00005-of-00006.safetensors",
|
185 |
+
"model.layers.19.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
186 |
+
"model.layers.19.mlp.down_proj.bias": "model-00005-of-00006.safetensors",
|
187 |
+
"model.layers.19.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
188 |
+
"model.layers.19.mlp.up_proj.bias": "model-00004-of-00006.safetensors",
|
189 |
+
"model.layers.19.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
190 |
+
"model.layers.19.post_attention_layernorm.bias": "model-00005-of-00006.safetensors",
|
191 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
192 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
|
193 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
194 |
+
"model.layers.19.self_attn.o_proj.bias": "model-00004-of-00006.safetensors",
|
195 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
196 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
|
197 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
198 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
|
199 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
200 |
+
"model.layers.2.input_layernorm.bias": "model-00001-of-00006.safetensors",
|
201 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
202 |
+
"model.layers.2.mlp.down_proj.bias": "model-00001-of-00006.safetensors",
|
203 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
204 |
+
"model.layers.2.mlp.up_proj.bias": "model-00001-of-00006.safetensors",
|
205 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
206 |
+
"model.layers.2.post_attention_layernorm.bias": "model-00001-of-00006.safetensors",
|
207 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
208 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
|
209 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
210 |
+
"model.layers.2.self_attn.o_proj.bias": "model-00001-of-00006.safetensors",
|
211 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
212 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
|
213 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
214 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
|
215 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
216 |
+
"model.layers.20.input_layernorm.bias": "model-00005-of-00006.safetensors",
|
217 |
+
"model.layers.20.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
218 |
+
"model.layers.20.mlp.down_proj.bias": "model-00005-of-00006.safetensors",
|
219 |
+
"model.layers.20.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
220 |
+
"model.layers.20.mlp.up_proj.bias": "model-00005-of-00006.safetensors",
|
221 |
+
"model.layers.20.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
222 |
+
"model.layers.20.post_attention_layernorm.bias": "model-00005-of-00006.safetensors",
|
223 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
224 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
225 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
226 |
+
"model.layers.20.self_attn.o_proj.bias": "model-00005-of-00006.safetensors",
|
227 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
228 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
229 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
230 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
231 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
232 |
+
"model.layers.21.input_layernorm.bias": "model-00005-of-00006.safetensors",
|
233 |
+
"model.layers.21.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
234 |
+
"model.layers.21.mlp.down_proj.bias": "model-00005-of-00006.safetensors",
|
235 |
+
"model.layers.21.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
236 |
+
"model.layers.21.mlp.up_proj.bias": "model-00005-of-00006.safetensors",
|
237 |
+
"model.layers.21.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
238 |
+
"model.layers.21.post_attention_layernorm.bias": "model-00005-of-00006.safetensors",
|
239 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
240 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
241 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
242 |
+
"model.layers.21.self_attn.o_proj.bias": "model-00005-of-00006.safetensors",
|
243 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
244 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
245 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
246 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
247 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
248 |
+
"model.layers.22.input_layernorm.bias": "model-00005-of-00006.safetensors",
|
249 |
+
"model.layers.22.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
250 |
+
"model.layers.22.mlp.down_proj.bias": "model-00005-of-00006.safetensors",
|
251 |
+
"model.layers.22.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
252 |
+
"model.layers.22.mlp.up_proj.bias": "model-00005-of-00006.safetensors",
|
253 |
+
"model.layers.22.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
254 |
+
"model.layers.22.post_attention_layernorm.bias": "model-00005-of-00006.safetensors",
|
255 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
256 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
257 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
258 |
+
"model.layers.22.self_attn.o_proj.bias": "model-00005-of-00006.safetensors",
|
259 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
260 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
261 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
262 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
263 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
264 |
+
"model.layers.23.input_layernorm.bias": "model-00005-of-00006.safetensors",
|
265 |
+
"model.layers.23.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
266 |
+
"model.layers.23.mlp.down_proj.bias": "model-00005-of-00006.safetensors",
|
267 |
+
"model.layers.23.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
268 |
+
"model.layers.23.mlp.up_proj.bias": "model-00005-of-00006.safetensors",
|
269 |
+
"model.layers.23.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
270 |
+
"model.layers.23.post_attention_layernorm.bias": "model-00005-of-00006.safetensors",
|
271 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
272 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
273 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
274 |
+
"model.layers.23.self_attn.o_proj.bias": "model-00005-of-00006.safetensors",
|
275 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
276 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
277 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
278 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
279 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
280 |
+
"model.layers.24.input_layernorm.bias": "model-00005-of-00006.safetensors",
|
281 |
+
"model.layers.24.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
282 |
+
"model.layers.24.mlp.down_proj.bias": "model-00005-of-00006.safetensors",
|
283 |
+
"model.layers.24.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
284 |
+
"model.layers.24.mlp.up_proj.bias": "model-00005-of-00006.safetensors",
|
285 |
+
"model.layers.24.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
286 |
+
"model.layers.24.post_attention_layernorm.bias": "model-00005-of-00006.safetensors",
|
287 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
288 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
289 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
290 |
+
"model.layers.24.self_attn.o_proj.bias": "model-00005-of-00006.safetensors",
|
291 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
292 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
293 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
294 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
295 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
296 |
+
"model.layers.25.input_layernorm.bias": "model-00006-of-00006.safetensors",
|
297 |
+
"model.layers.25.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
298 |
+
"model.layers.25.mlp.down_proj.bias": "model-00006-of-00006.safetensors",
|
299 |
+
"model.layers.25.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
300 |
+
"model.layers.25.mlp.up_proj.bias": "model-00006-of-00006.safetensors",
|
301 |
+
"model.layers.25.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
302 |
+
"model.layers.25.post_attention_layernorm.bias": "model-00006-of-00006.safetensors",
|
303 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
304 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
|
305 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
306 |
+
"model.layers.25.self_attn.o_proj.bias": "model-00005-of-00006.safetensors",
|
307 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
308 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
|
309 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
310 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
|
311 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
312 |
+
"model.layers.26.input_layernorm.bias": "model-00006-of-00006.safetensors",
|
313 |
+
"model.layers.26.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
314 |
+
"model.layers.26.mlp.down_proj.bias": "model-00006-of-00006.safetensors",
|
315 |
+
"model.layers.26.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
316 |
+
"model.layers.26.mlp.up_proj.bias": "model-00006-of-00006.safetensors",
|
317 |
+
"model.layers.26.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
318 |
+
"model.layers.26.post_attention_layernorm.bias": "model-00006-of-00006.safetensors",
|
319 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
320 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
|
321 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
322 |
+
"model.layers.26.self_attn.o_proj.bias": "model-00006-of-00006.safetensors",
|
323 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
324 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
|
325 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
326 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
|
327 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
328 |
+
"model.layers.3.input_layernorm.bias": "model-00002-of-00006.safetensors",
|
329 |
+
"model.layers.3.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
330 |
+
"model.layers.3.mlp.down_proj.bias": "model-00002-of-00006.safetensors",
|
331 |
+
"model.layers.3.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
332 |
+
"model.layers.3.mlp.up_proj.bias": "model-00002-of-00006.safetensors",
|
333 |
+
"model.layers.3.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
334 |
+
"model.layers.3.post_attention_layernorm.bias": "model-00002-of-00006.safetensors",
|
335 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
336 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
337 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
338 |
+
"model.layers.3.self_attn.o_proj.bias": "model-00002-of-00006.safetensors",
|
339 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
340 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
341 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
342 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
343 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
344 |
+
"model.layers.4.input_layernorm.bias": "model-00002-of-00006.safetensors",
|
345 |
+
"model.layers.4.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
346 |
+
"model.layers.4.mlp.down_proj.bias": "model-00002-of-00006.safetensors",
|
347 |
+
"model.layers.4.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
348 |
+
"model.layers.4.mlp.up_proj.bias": "model-00002-of-00006.safetensors",
|
349 |
+
"model.layers.4.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
350 |
+
"model.layers.4.post_attention_layernorm.bias": "model-00002-of-00006.safetensors",
|
351 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
352 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
353 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
354 |
+
"model.layers.4.self_attn.o_proj.bias": "model-00002-of-00006.safetensors",
|
355 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
356 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
357 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
358 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
359 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
360 |
+
"model.layers.5.input_layernorm.bias": "model-00002-of-00006.safetensors",
|
361 |
+
"model.layers.5.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
362 |
+
"model.layers.5.mlp.down_proj.bias": "model-00002-of-00006.safetensors",
|
363 |
+
"model.layers.5.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
364 |
+
"model.layers.5.mlp.up_proj.bias": "model-00002-of-00006.safetensors",
|
365 |
+
"model.layers.5.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
366 |
+
"model.layers.5.post_attention_layernorm.bias": "model-00002-of-00006.safetensors",
|
367 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
368 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
369 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
370 |
+
"model.layers.5.self_attn.o_proj.bias": "model-00002-of-00006.safetensors",
|
371 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
372 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
373 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
374 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
375 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
376 |
+
"model.layers.6.input_layernorm.bias": "model-00002-of-00006.safetensors",
|
377 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
378 |
+
"model.layers.6.mlp.down_proj.bias": "model-00002-of-00006.safetensors",
|
379 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
380 |
+
"model.layers.6.mlp.up_proj.bias": "model-00002-of-00006.safetensors",
|
381 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
382 |
+
"model.layers.6.post_attention_layernorm.bias": "model-00002-of-00006.safetensors",
|
383 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
384 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
385 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
386 |
+
"model.layers.6.self_attn.o_proj.bias": "model-00002-of-00006.safetensors",
|
387 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
388 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
389 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
390 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
391 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
392 |
+
"model.layers.7.input_layernorm.bias": "model-00002-of-00006.safetensors",
|
393 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
394 |
+
"model.layers.7.mlp.down_proj.bias": "model-00002-of-00006.safetensors",
|
395 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
396 |
+
"model.layers.7.mlp.up_proj.bias": "model-00002-of-00006.safetensors",
|
397 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
398 |
+
"model.layers.7.post_attention_layernorm.bias": "model-00002-of-00006.safetensors",
|
399 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
400 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
401 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
402 |
+
"model.layers.7.self_attn.o_proj.bias": "model-00002-of-00006.safetensors",
|
403 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
404 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
405 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
406 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
407 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
408 |
+
"model.layers.8.input_layernorm.bias": "model-00003-of-00006.safetensors",
|
409 |
+
"model.layers.8.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
410 |
+
"model.layers.8.mlp.down_proj.bias": "model-00003-of-00006.safetensors",
|
411 |
+
"model.layers.8.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
412 |
+
"model.layers.8.mlp.up_proj.bias": "model-00002-of-00006.safetensors",
|
413 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
414 |
+
"model.layers.8.post_attention_layernorm.bias": "model-00003-of-00006.safetensors",
|
415 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
416 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
|
417 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
418 |
+
"model.layers.8.self_attn.o_proj.bias": "model-00002-of-00006.safetensors",
|
419 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
420 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
|
421 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
422 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
|
423 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
424 |
+
"model.layers.9.input_layernorm.bias": "model-00003-of-00006.safetensors",
|
425 |
+
"model.layers.9.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
426 |
+
"model.layers.9.mlp.down_proj.bias": "model-00003-of-00006.safetensors",
|
427 |
+
"model.layers.9.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
428 |
+
"model.layers.9.mlp.up_proj.bias": "model-00003-of-00006.safetensors",
|
429 |
+
"model.layers.9.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
430 |
+
"model.layers.9.post_attention_layernorm.bias": "model-00003-of-00006.safetensors",
|
431 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
432 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
|
433 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
434 |
+
"model.layers.9.self_attn.o_proj.bias": "model-00003-of-00006.safetensors",
|
435 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
436 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
|
437 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
438 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
|
439 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
440 |
+
"model.norm.bias": "model-00006-of-00006.safetensors",
|
441 |
+
"model.norm.weight": "model-00006-of-00006.safetensors"
|
442 |
+
}
|
443 |
+
}
|
modeling_pharia.py
ADDED
@@ -0,0 +1,870 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# we don't want to support mypy for this file for now
|
2 |
+
# type: ignore
|
3 |
+
|
4 |
+
import math
|
5 |
+
from typing import List, Optional, Tuple, Union
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
from transformers.activations import ACT2FN
|
10 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
11 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
12 |
+
from transformers.modeling_outputs import (
|
13 |
+
BaseModelOutputWithPast,
|
14 |
+
CausalLMOutputWithPast,
|
15 |
+
)
|
16 |
+
from transformers.modeling_utils import PreTrainedModel
|
17 |
+
|
18 |
+
from .configuration_pharia import PhariaConfig
|
19 |
+
|
20 |
+
|
21 |
+
class PhariaRotaryEmbedding(nn.Module):
|
22 |
+
def __init__(
|
23 |
+
self,
|
24 |
+
dim,
|
25 |
+
max_position_embeddings=2048,
|
26 |
+
base=10000,
|
27 |
+
device=None,
|
28 |
+
scaling_factor=1.0,
|
29 |
+
):
|
30 |
+
super().__init__()
|
31 |
+
self.scaling_factor = scaling_factor
|
32 |
+
self.dim = dim
|
33 |
+
self.max_position_embeddings = max_position_embeddings
|
34 |
+
self.base = base
|
35 |
+
inv_freq = 1.0 / (
|
36 |
+
self.base
|
37 |
+
** (
|
38 |
+
torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device)
|
39 |
+
/ self.dim
|
40 |
+
)
|
41 |
+
)
|
42 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
43 |
+
# For BC we register cos and sin cached
|
44 |
+
self.max_seq_len_cached = max_position_embeddings
|
45 |
+
|
46 |
+
@torch.no_grad()
|
47 |
+
def forward(self, x, position_ids):
|
48 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
49 |
+
inv_freq_expanded = (
|
50 |
+
self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
51 |
+
)
|
52 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
53 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
54 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
55 |
+
device_type = x.device.type
|
56 |
+
device_type = (
|
57 |
+
device_type
|
58 |
+
if isinstance(device_type, str) and device_type != "mps"
|
59 |
+
else "cpu"
|
60 |
+
)
|
61 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
62 |
+
freqs = (
|
63 |
+
inv_freq_expanded.float() @ position_ids_expanded.float()
|
64 |
+
).transpose(1, 2)
|
65 |
+
emb = freqs.repeat_interleave(2, dim=-1, output_size=self.dim)
|
66 |
+
cos = emb.cos()
|
67 |
+
sin = emb.sin()
|
68 |
+
|
69 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
70 |
+
|
71 |
+
|
72 |
+
class PhariaLinearScalingRotaryEmbedding(PhariaRotaryEmbedding):
|
73 |
+
"""PhariaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
74 |
+
|
75 |
+
def forward(self, x, position_ids):
|
76 |
+
# difference to the original RoPE: a scaling factor is aplied to the position ids
|
77 |
+
position_ids = position_ids.float() / self.scaling_factor
|
78 |
+
cos, sin = super().forward(x, position_ids)
|
79 |
+
return cos, sin
|
80 |
+
|
81 |
+
|
82 |
+
class PhariaDynamicNTKScalingRotaryEmbedding(PhariaRotaryEmbedding):
|
83 |
+
"""PhariaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
84 |
+
|
85 |
+
def forward(self, x, position_ids):
|
86 |
+
# difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
|
87 |
+
seq_len = torch.max(position_ids) + 1
|
88 |
+
if seq_len > self.max_position_embeddings:
|
89 |
+
base = self.base * (
|
90 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings)
|
91 |
+
- (self.scaling_factor - 1)
|
92 |
+
) ** (self.dim / (self.dim - 2))
|
93 |
+
inv_freq = 1.0 / (
|
94 |
+
base
|
95 |
+
** (
|
96 |
+
torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(x.device)
|
97 |
+
/ self.dim
|
98 |
+
)
|
99 |
+
)
|
100 |
+
self.register_buffer(
|
101 |
+
"inv_freq", inv_freq, persistent=False
|
102 |
+
) # TODO joao: this may break with compilation
|
103 |
+
|
104 |
+
cos, sin = super().forward(x, position_ids)
|
105 |
+
return cos, sin
|
106 |
+
|
107 |
+
|
108 |
+
def rotate_half(x):
|
109 |
+
"""Rotates half the hidden dims of the input (interleaved)."""
|
110 |
+
y = torch.empty_like(x)
|
111 |
+
y[..., ::2] = -x[..., 1::2]
|
112 |
+
y[..., 1::2] = x[..., ::2]
|
113 |
+
return y
|
114 |
+
|
115 |
+
|
116 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
117 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
118 |
+
|
119 |
+
Args:
|
120 |
+
q (`torch.Tensor`): The query tensor.
|
121 |
+
k (`torch.Tensor`): The key tensor.
|
122 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
123 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
124 |
+
position_ids (`torch.Tensor`, *optional*):
|
125 |
+
Deprecated and unused.
|
126 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
127 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
128 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
129 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
130 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
131 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
132 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
133 |
+
Returns:
|
134 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
135 |
+
"""
|
136 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
137 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
138 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
139 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
140 |
+
|
141 |
+
return q_embed, k_embed
|
142 |
+
|
143 |
+
|
144 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
145 |
+
"""
|
146 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
147 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
148 |
+
"""
|
149 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
150 |
+
if n_rep == 1:
|
151 |
+
return hidden_states
|
152 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(
|
153 |
+
batch, num_key_value_heads, n_rep, slen, head_dim
|
154 |
+
)
|
155 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
156 |
+
|
157 |
+
|
158 |
+
class LlamaAttention(nn.Module):
|
159 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
160 |
+
|
161 |
+
def __init__(self, config: PhariaConfig, layer_idx: Optional[int] = None):
|
162 |
+
super().__init__()
|
163 |
+
self.config = config
|
164 |
+
self.layer_idx = layer_idx
|
165 |
+
# if layer_idx is None:
|
166 |
+
# logger.warning_once(
|
167 |
+
# f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
168 |
+
# "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
169 |
+
# "when creating this class."
|
170 |
+
# )
|
171 |
+
|
172 |
+
self.attention_dropout = config.attention_dropout
|
173 |
+
self.hidden_size = config.hidden_size
|
174 |
+
self.num_heads = config.num_attention_heads
|
175 |
+
self.head_dim = self.hidden_size // self.num_heads
|
176 |
+
self.num_key_value_heads = config.num_key_value_heads
|
177 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
178 |
+
self.max_position_embeddings = config.max_position_embeddings
|
179 |
+
self.rope_theta = config.rope_theta
|
180 |
+
self.is_causal = True
|
181 |
+
|
182 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
183 |
+
raise ValueError(
|
184 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
185 |
+
f" and `num_heads`: {self.num_heads})."
|
186 |
+
)
|
187 |
+
|
188 |
+
self.q_proj = nn.Linear(
|
189 |
+
self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias
|
190 |
+
)
|
191 |
+
self.k_proj = nn.Linear(
|
192 |
+
self.hidden_size,
|
193 |
+
self.num_key_value_heads * self.head_dim,
|
194 |
+
bias=config.attention_bias,
|
195 |
+
)
|
196 |
+
self.v_proj = nn.Linear(
|
197 |
+
self.hidden_size,
|
198 |
+
self.num_key_value_heads * self.head_dim,
|
199 |
+
bias=config.attention_bias,
|
200 |
+
)
|
201 |
+
self.o_proj = nn.Linear(
|
202 |
+
self.hidden_size, self.hidden_size, bias=config.attention_bias
|
203 |
+
)
|
204 |
+
self._init_rope()
|
205 |
+
|
206 |
+
def _init_rope(self):
|
207 |
+
if self.config.rope_scaling is None:
|
208 |
+
self.rotary_emb = PhariaRotaryEmbedding(
|
209 |
+
self.head_dim,
|
210 |
+
max_position_embeddings=self.max_position_embeddings,
|
211 |
+
base=self.rope_theta,
|
212 |
+
)
|
213 |
+
else:
|
214 |
+
scaling_type = self.config.rope_scaling["type"]
|
215 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
216 |
+
if scaling_type == "linear":
|
217 |
+
self.rotary_emb = PhariaLinearScalingRotaryEmbedding(
|
218 |
+
self.head_dim,
|
219 |
+
max_position_embeddings=self.max_position_embeddings,
|
220 |
+
scaling_factor=scaling_factor,
|
221 |
+
base=self.rope_theta,
|
222 |
+
)
|
223 |
+
elif scaling_type == "dynamic":
|
224 |
+
self.rotary_emb = PhariaDynamicNTKScalingRotaryEmbedding(
|
225 |
+
self.head_dim,
|
226 |
+
max_position_embeddings=self.max_position_embeddings,
|
227 |
+
scaling_factor=scaling_factor,
|
228 |
+
base=self.rope_theta,
|
229 |
+
)
|
230 |
+
else:
|
231 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
232 |
+
|
233 |
+
def forward(
|
234 |
+
self,
|
235 |
+
hidden_states: torch.Tensor,
|
236 |
+
attention_mask: Optional[torch.Tensor] = None,
|
237 |
+
position_ids: Optional[torch.LongTensor] = None,
|
238 |
+
past_key_value: Optional[Cache] = None,
|
239 |
+
output_attentions: bool = False,
|
240 |
+
use_cache: bool = False,
|
241 |
+
cache_position: Optional[torch.LongTensor] = None,
|
242 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
243 |
+
bsz, q_len, _ = hidden_states.size()
|
244 |
+
|
245 |
+
query_states = self.q_proj(hidden_states)
|
246 |
+
key_states = self.k_proj(hidden_states)
|
247 |
+
value_states = self.v_proj(hidden_states)
|
248 |
+
|
249 |
+
query_states = query_states.view(
|
250 |
+
bsz, q_len, self.num_heads, self.head_dim
|
251 |
+
).transpose(1, 2)
|
252 |
+
key_states = key_states.view(
|
253 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
254 |
+
).transpose(1, 2)
|
255 |
+
value_states = value_states.view(
|
256 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
257 |
+
).transpose(1, 2)
|
258 |
+
|
259 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
260 |
+
query_states, key_states = apply_rotary_pos_emb(
|
261 |
+
query_states, key_states, cos, sin
|
262 |
+
)
|
263 |
+
|
264 |
+
if past_key_value is not None:
|
265 |
+
# cache_position needed for the static cache
|
266 |
+
cache_kwargs = {"cache_position": cache_position}
|
267 |
+
key_states, value_states = past_key_value.update(
|
268 |
+
key_states, value_states, self.layer_idx, cache_kwargs
|
269 |
+
)
|
270 |
+
|
271 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
272 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
273 |
+
|
274 |
+
attn_weights = torch.matmul(
|
275 |
+
query_states, key_states.transpose(2, 3)
|
276 |
+
) / math.sqrt(self.head_dim)
|
277 |
+
|
278 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
279 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
280 |
+
attn_weights = attn_weights + causal_mask
|
281 |
+
|
282 |
+
# upcast attention to fp32
|
283 |
+
attn_weights = nn.functional.softmax(
|
284 |
+
attn_weights, dim=-1, dtype=torch.float32
|
285 |
+
).to(query_states.dtype)
|
286 |
+
attn_weights = nn.functional.dropout(
|
287 |
+
attn_weights, p=self.attention_dropout, training=self.training
|
288 |
+
)
|
289 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
290 |
+
|
291 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
292 |
+
raise ValueError(
|
293 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
294 |
+
f" {attn_output.size()}"
|
295 |
+
)
|
296 |
+
|
297 |
+
attn_output: Optional[torch.Tensor] = attn_output.transpose(1, 2).contiguous()
|
298 |
+
|
299 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
300 |
+
|
301 |
+
attn_output = self.o_proj(attn_output)
|
302 |
+
|
303 |
+
if not output_attentions:
|
304 |
+
attn_weights = None
|
305 |
+
|
306 |
+
return attn_output, attn_weights, past_key_value
|
307 |
+
|
308 |
+
|
309 |
+
class PhariaMLP(nn.Module):
|
310 |
+
def __init__(self, config, layer_idx: int):
|
311 |
+
super().__init__()
|
312 |
+
self.layer_idx = layer_idx
|
313 |
+
self.config = config
|
314 |
+
self.hidden_size = config.hidden_size
|
315 |
+
self.intermediate_size = config.intermediate_size
|
316 |
+
self.up_proj = nn.Linear(
|
317 |
+
self.hidden_size, self.intermediate_size, bias=config.mlp_bias
|
318 |
+
)
|
319 |
+
self.down_proj = nn.Linear(
|
320 |
+
self.intermediate_size, self.hidden_size, bias=config.mlp_bias
|
321 |
+
)
|
322 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
323 |
+
|
324 |
+
def forward(self, x):
|
325 |
+
o = self.down_proj(self.act_fn(self.up_proj(x)))
|
326 |
+
return o
|
327 |
+
|
328 |
+
|
329 |
+
class PhariaDecoderLayer(nn.Module):
|
330 |
+
def __init__(self, config: PhariaConfig, layer_idx: int):
|
331 |
+
super().__init__()
|
332 |
+
self.hidden_size = config.hidden_size
|
333 |
+
self.self_attn = LlamaAttention(config=config, layer_idx=layer_idx)
|
334 |
+
self.mlp = PhariaMLP(config, layer_idx=layer_idx)
|
335 |
+
self.input_layernorm = nn.LayerNorm(config.hidden_size)
|
336 |
+
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size)
|
337 |
+
self.layer_idx = layer_idx
|
338 |
+
|
339 |
+
def forward(
|
340 |
+
self,
|
341 |
+
hidden_states: torch.Tensor,
|
342 |
+
attention_mask: Optional[torch.Tensor] = None,
|
343 |
+
position_ids: Optional[torch.LongTensor] = None,
|
344 |
+
past_key_value: Optional[Cache] = None,
|
345 |
+
output_attentions: Optional[bool] = False,
|
346 |
+
use_cache: Optional[bool] = False,
|
347 |
+
cache_position: Optional[torch.LongTensor] = None,
|
348 |
+
) -> Tuple[
|
349 |
+
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
|
350 |
+
]:
|
351 |
+
residual = hidden_states
|
352 |
+
|
353 |
+
hidden_states = self.input_layernorm(hidden_states)
|
354 |
+
|
355 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
356 |
+
hidden_states=hidden_states,
|
357 |
+
attention_mask=attention_mask,
|
358 |
+
position_ids=position_ids,
|
359 |
+
past_key_value=past_key_value,
|
360 |
+
output_attentions=output_attentions,
|
361 |
+
use_cache=use_cache,
|
362 |
+
cache_position=cache_position,
|
363 |
+
)
|
364 |
+
hidden_states = residual + hidden_states
|
365 |
+
|
366 |
+
residual = hidden_states
|
367 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
368 |
+
|
369 |
+
if self.layer_idx == -1:
|
370 |
+
print("Layer 0 huggingface")
|
371 |
+
print(hidden_states)
|
372 |
+
print(hidden_states.shape)
|
373 |
+
|
374 |
+
hidden_states = self.mlp(hidden_states)
|
375 |
+
hidden_states = residual + hidden_states
|
376 |
+
|
377 |
+
outputs = (hidden_states,)
|
378 |
+
|
379 |
+
if output_attentions:
|
380 |
+
outputs += (self_attn_weights,)
|
381 |
+
|
382 |
+
if use_cache:
|
383 |
+
outputs += (present_key_value,)
|
384 |
+
|
385 |
+
return outputs
|
386 |
+
|
387 |
+
|
388 |
+
class PhariaPreTrainedModel(PreTrainedModel):
|
389 |
+
config_class = PhariaConfig
|
390 |
+
base_model_prefix = "model"
|
391 |
+
supports_gradient_checkpointing = True
|
392 |
+
_no_split_modules = ["PhariaDecoderLayer"]
|
393 |
+
_skip_keys_device_placement = ["past_key_values"]
|
394 |
+
_supports_flash_attn_2 = False
|
395 |
+
_supports_sdpa = False
|
396 |
+
_supports_cache_class = True
|
397 |
+
_supports_static_cache = True
|
398 |
+
|
399 |
+
def _init_weights(self, module):
|
400 |
+
std = self.config.initializer_range
|
401 |
+
if isinstance(module, nn.Linear):
|
402 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
403 |
+
if module.bias is not None:
|
404 |
+
module.bias.data.zero_()
|
405 |
+
elif isinstance(module, nn.Embedding):
|
406 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
407 |
+
if module.padding_idx is not None:
|
408 |
+
module.weight.data[module.padding_idx].zero_()
|
409 |
+
|
410 |
+
|
411 |
+
class PhariaModel(PhariaPreTrainedModel):
|
412 |
+
config_class = PhariaConfig
|
413 |
+
|
414 |
+
def __init__(self, config: PhariaConfig):
|
415 |
+
super().__init__(config)
|
416 |
+
self.padding_idx = config.pad_token_id
|
417 |
+
self.vocab_size = config.vocab_size
|
418 |
+
|
419 |
+
self.embed_tokens = nn.Embedding(
|
420 |
+
config.vocab_size, config.hidden_size, self.padding_idx
|
421 |
+
)
|
422 |
+
|
423 |
+
self.layers = nn.ModuleList(
|
424 |
+
[
|
425 |
+
PhariaDecoderLayer(config, layer_idx)
|
426 |
+
for layer_idx in range(config.num_hidden_layers)
|
427 |
+
]
|
428 |
+
)
|
429 |
+
self.norm = nn.LayerNorm(config.hidden_size)
|
430 |
+
|
431 |
+
def forward(
|
432 |
+
self,
|
433 |
+
input_ids: torch.LongTensor = None,
|
434 |
+
attention_mask: Optional[torch.Tensor] = None,
|
435 |
+
position_ids: Optional[torch.LongTensor] = None,
|
436 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
437 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
438 |
+
use_cache: Optional[bool] = None,
|
439 |
+
output_attentions: Optional[bool] = None,
|
440 |
+
output_hidden_states: Optional[bool] = None,
|
441 |
+
return_dict: Optional[bool] = None,
|
442 |
+
cache_position: Optional[torch.LongTensor] = None,
|
443 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
444 |
+
output_attentions = (
|
445 |
+
output_attentions
|
446 |
+
if output_attentions is not None
|
447 |
+
else self.config.output_attentions
|
448 |
+
)
|
449 |
+
output_hidden_states = (
|
450 |
+
output_hidden_states
|
451 |
+
if output_hidden_states is not None
|
452 |
+
else self.config.output_hidden_states
|
453 |
+
)
|
454 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
455 |
+
return_dict = (
|
456 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
457 |
+
)
|
458 |
+
|
459 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
460 |
+
raise ValueError(
|
461 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
462 |
+
)
|
463 |
+
|
464 |
+
# if self.gradient_checkpointing and self.training and use_cache:
|
465 |
+
# # logger.warning_once(
|
466 |
+
# # "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
467 |
+
# # )
|
468 |
+
# use_cache = False
|
469 |
+
|
470 |
+
if inputs_embeds is None:
|
471 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
472 |
+
|
473 |
+
return_legacy_cache = False
|
474 |
+
if use_cache and not isinstance(
|
475 |
+
past_key_values, Cache
|
476 |
+
): # kept for BC (non `Cache` `past_key_values` inputs)
|
477 |
+
return_legacy_cache = True
|
478 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
479 |
+
|
480 |
+
if cache_position is None:
|
481 |
+
past_seen_tokens = (
|
482 |
+
past_key_values.get_seq_length() if past_key_values is not None else 0
|
483 |
+
)
|
484 |
+
cache_position = torch.arange(
|
485 |
+
past_seen_tokens,
|
486 |
+
past_seen_tokens + inputs_embeds.shape[1],
|
487 |
+
device=inputs_embeds.device,
|
488 |
+
)
|
489 |
+
if position_ids is None:
|
490 |
+
position_ids = cache_position.unsqueeze(0)
|
491 |
+
|
492 |
+
causal_mask = self._update_causal_mask(
|
493 |
+
attention_mask,
|
494 |
+
inputs_embeds,
|
495 |
+
cache_position,
|
496 |
+
past_key_values,
|
497 |
+
output_attentions,
|
498 |
+
)
|
499 |
+
|
500 |
+
# embed positions
|
501 |
+
hidden_states = inputs_embeds
|
502 |
+
|
503 |
+
# decoder layers
|
504 |
+
all_hidden_states = () if output_hidden_states else None
|
505 |
+
all_self_attns = () if output_attentions else None
|
506 |
+
next_decoder_cache = None
|
507 |
+
|
508 |
+
for decoder_layer in self.layers:
|
509 |
+
if output_hidden_states:
|
510 |
+
all_hidden_states += (hidden_states,)
|
511 |
+
|
512 |
+
# if self.gradient_checkpointing and self.training:
|
513 |
+
# layer_outputs = self._gradient_checkpointing_func(
|
514 |
+
# decoder_layer.__call__,
|
515 |
+
# hidden_states,
|
516 |
+
# causal_mask,
|
517 |
+
# position_ids,
|
518 |
+
# past_key_values,
|
519 |
+
# output_attentions,
|
520 |
+
# use_cache,
|
521 |
+
# cache_position,
|
522 |
+
# )
|
523 |
+
# else:
|
524 |
+
layer_outputs = decoder_layer(
|
525 |
+
hidden_states,
|
526 |
+
attention_mask=causal_mask,
|
527 |
+
position_ids=position_ids,
|
528 |
+
past_key_value=past_key_values,
|
529 |
+
output_attentions=output_attentions,
|
530 |
+
use_cache=use_cache,
|
531 |
+
cache_position=cache_position,
|
532 |
+
)
|
533 |
+
|
534 |
+
hidden_states = layer_outputs[0]
|
535 |
+
|
536 |
+
if use_cache:
|
537 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
538 |
+
|
539 |
+
if output_attentions:
|
540 |
+
all_self_attns += (layer_outputs[1],)
|
541 |
+
|
542 |
+
hidden_states = self.norm(hidden_states)
|
543 |
+
|
544 |
+
# add hidden states from the last decoder layer
|
545 |
+
if output_hidden_states:
|
546 |
+
all_hidden_states += (hidden_states,)
|
547 |
+
|
548 |
+
next_cache = next_decoder_cache if use_cache else None
|
549 |
+
if return_legacy_cache:
|
550 |
+
next_cache = next_cache.to_legacy_cache()
|
551 |
+
|
552 |
+
if not return_dict:
|
553 |
+
return tuple(
|
554 |
+
v
|
555 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
556 |
+
if v is not None
|
557 |
+
)
|
558 |
+
return BaseModelOutputWithPast(
|
559 |
+
last_hidden_state=hidden_states,
|
560 |
+
past_key_values=next_cache,
|
561 |
+
hidden_states=all_hidden_states,
|
562 |
+
attentions=all_self_attns,
|
563 |
+
)
|
564 |
+
|
565 |
+
def _update_causal_mask(
|
566 |
+
self,
|
567 |
+
attention_mask: torch.Tensor,
|
568 |
+
input_tensor: torch.Tensor,
|
569 |
+
cache_position: torch.Tensor,
|
570 |
+
past_key_values: Cache,
|
571 |
+
output_attentions: bool,
|
572 |
+
):
|
573 |
+
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
|
574 |
+
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
575 |
+
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
|
576 |
+
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
|
577 |
+
|
578 |
+
if self.config._attn_implementation == "flash_attention_2":
|
579 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
580 |
+
return attention_mask
|
581 |
+
return None
|
582 |
+
|
583 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
584 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
585 |
+
# to infer the attention mask.
|
586 |
+
past_seen_tokens = (
|
587 |
+
past_key_values.get_seq_length() if past_key_values is not None else 0
|
588 |
+
)
|
589 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
590 |
+
|
591 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
592 |
+
if (
|
593 |
+
self.config._attn_implementation == "sdpa"
|
594 |
+
and not using_static_cache
|
595 |
+
and not output_attentions
|
596 |
+
):
|
597 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
598 |
+
attention_mask,
|
599 |
+
inputs_embeds=input_tensor,
|
600 |
+
past_key_values_length=past_seen_tokens,
|
601 |
+
is_training=self.training,
|
602 |
+
):
|
603 |
+
return None
|
604 |
+
|
605 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
606 |
+
min_dtype = torch.finfo(dtype).min
|
607 |
+
sequence_length = input_tensor.shape[1]
|
608 |
+
if using_static_cache:
|
609 |
+
target_length = past_key_values.get_max_length()
|
610 |
+
else:
|
611 |
+
target_length = (
|
612 |
+
attention_mask.shape[-1]
|
613 |
+
if isinstance(attention_mask, torch.Tensor)
|
614 |
+
else past_seen_tokens + sequence_length + 1
|
615 |
+
)
|
616 |
+
|
617 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
618 |
+
# in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
|
619 |
+
if attention_mask.max() != 0:
|
620 |
+
raise ValueError(
|
621 |
+
"Custom 4D attention mask should be passed in inverted form with max==0`"
|
622 |
+
)
|
623 |
+
causal_mask = attention_mask
|
624 |
+
else:
|
625 |
+
causal_mask = torch.full(
|
626 |
+
(sequence_length, target_length),
|
627 |
+
fill_value=min_dtype,
|
628 |
+
dtype=dtype,
|
629 |
+
device=device,
|
630 |
+
)
|
631 |
+
if sequence_length != 1:
|
632 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
633 |
+
causal_mask *= torch.arange(
|
634 |
+
target_length, device=device
|
635 |
+
) > cache_position.reshape(-1, 1)
|
636 |
+
causal_mask = causal_mask[None, None, :, :].expand(
|
637 |
+
input_tensor.shape[0], 1, -1, -1
|
638 |
+
)
|
639 |
+
if attention_mask is not None:
|
640 |
+
causal_mask = (
|
641 |
+
causal_mask.clone()
|
642 |
+
) # copy to contiguous memory for in-place edit
|
643 |
+
mask_length = attention_mask.shape[-1]
|
644 |
+
padding_mask = (
|
645 |
+
causal_mask[:, :, :, :mask_length]
|
646 |
+
+ attention_mask[:, None, None, :]
|
647 |
+
)
|
648 |
+
padding_mask = padding_mask == 0
|
649 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[
|
650 |
+
:, :, :, :mask_length
|
651 |
+
].masked_fill(padding_mask, min_dtype)
|
652 |
+
if (
|
653 |
+
self.config._attn_implementation == "sdpa"
|
654 |
+
and attention_mask is not None
|
655 |
+
and attention_mask.device.type == "cuda"
|
656 |
+
and not output_attentions
|
657 |
+
):
|
658 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
659 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
660 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
661 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(
|
662 |
+
causal_mask, min_dtype
|
663 |
+
)
|
664 |
+
|
665 |
+
return causal_mask
|
666 |
+
|
667 |
+
|
668 |
+
class PhariaForCausalLM(PhariaPreTrainedModel):
|
669 |
+
_tied_weights_keys = ["lm_head.weight"]
|
670 |
+
|
671 |
+
def __init__(self, config):
|
672 |
+
super().__init__(config)
|
673 |
+
self.model = PhariaModel(config)
|
674 |
+
self.vocab_size = config.vocab_size
|
675 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
676 |
+
|
677 |
+
# Initialize weights and apply final processing
|
678 |
+
self.post_init()
|
679 |
+
|
680 |
+
def get_input_embeddings(self):
|
681 |
+
return self.model.embed_tokens
|
682 |
+
|
683 |
+
def set_input_embeddings(self, value):
|
684 |
+
self.model.embed_tokens = value
|
685 |
+
|
686 |
+
def get_output_embeddings(self):
|
687 |
+
return self.lm_head
|
688 |
+
|
689 |
+
def set_output_embeddings(self, new_embeddings):
|
690 |
+
self.lm_head = new_embeddings
|
691 |
+
|
692 |
+
def set_decoder(self, decoder):
|
693 |
+
self.model = decoder
|
694 |
+
|
695 |
+
def get_decoder(self):
|
696 |
+
return self.model
|
697 |
+
|
698 |
+
def forward(
|
699 |
+
self,
|
700 |
+
input_ids: torch.LongTensor = None,
|
701 |
+
attention_mask: Optional[torch.Tensor] = None,
|
702 |
+
position_ids: Optional[torch.LongTensor] = None,
|
703 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
704 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
705 |
+
labels: Optional[torch.LongTensor] = None,
|
706 |
+
use_cache: Optional[bool] = None,
|
707 |
+
output_attentions: Optional[bool] = None,
|
708 |
+
output_hidden_states: Optional[bool] = None,
|
709 |
+
return_dict: Optional[bool] = None,
|
710 |
+
cache_position: Optional[torch.LongTensor] = None,
|
711 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
712 |
+
r"""
|
713 |
+
Args:
|
714 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
715 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
716 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
717 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
718 |
+
|
719 |
+
Returns:
|
720 |
+
|
721 |
+
Example:
|
722 |
+
|
723 |
+
```python
|
724 |
+
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
725 |
+
|
726 |
+
>>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
|
727 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
|
728 |
+
|
729 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
730 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
731 |
+
|
732 |
+
>>> # Generate
|
733 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
734 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
735 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
736 |
+
```"""
|
737 |
+
output_attentions = (
|
738 |
+
output_attentions
|
739 |
+
if output_attentions is not None
|
740 |
+
else self.config.output_attentions
|
741 |
+
)
|
742 |
+
output_hidden_states = (
|
743 |
+
output_hidden_states
|
744 |
+
if output_hidden_states is not None
|
745 |
+
else self.config.output_hidden_states
|
746 |
+
)
|
747 |
+
return_dict = (
|
748 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
749 |
+
)
|
750 |
+
|
751 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
752 |
+
outputs = self.model(
|
753 |
+
input_ids=input_ids,
|
754 |
+
attention_mask=attention_mask,
|
755 |
+
position_ids=position_ids,
|
756 |
+
past_key_values=past_key_values,
|
757 |
+
inputs_embeds=inputs_embeds,
|
758 |
+
use_cache=use_cache,
|
759 |
+
output_attentions=output_attentions,
|
760 |
+
output_hidden_states=output_hidden_states,
|
761 |
+
return_dict=return_dict,
|
762 |
+
cache_position=cache_position,
|
763 |
+
)
|
764 |
+
|
765 |
+
hidden_states = outputs[0]
|
766 |
+
logits = self.lm_head(hidden_states)
|
767 |
+
logits = logits.float()
|
768 |
+
|
769 |
+
return CausalLMOutputWithPast(
|
770 |
+
loss=0.0,
|
771 |
+
logits=logits,
|
772 |
+
past_key_values=outputs.past_key_values,
|
773 |
+
hidden_states=outputs.hidden_states,
|
774 |
+
attentions=outputs.attentions,
|
775 |
+
)
|
776 |
+
|
777 |
+
def prepare_inputs_for_generation(
|
778 |
+
self,
|
779 |
+
input_ids,
|
780 |
+
past_key_values=None,
|
781 |
+
attention_mask=None,
|
782 |
+
inputs_embeds=None,
|
783 |
+
cache_position=None,
|
784 |
+
use_cache=True,
|
785 |
+
**kwargs,
|
786 |
+
):
|
787 |
+
past_length = 0
|
788 |
+
if past_key_values is not None:
|
789 |
+
if isinstance(past_key_values, Cache):
|
790 |
+
past_length = (
|
791 |
+
cache_position[0]
|
792 |
+
if cache_position is not None
|
793 |
+
else past_key_values.get_seq_length()
|
794 |
+
)
|
795 |
+
max_cache_length = (
|
796 |
+
torch.tensor(
|
797 |
+
past_key_values.get_max_length(), device=input_ids.device
|
798 |
+
)
|
799 |
+
if past_key_values.get_max_length() is not None
|
800 |
+
else None
|
801 |
+
)
|
802 |
+
cache_length = (
|
803 |
+
past_length
|
804 |
+
if max_cache_length is None
|
805 |
+
else torch.min(max_cache_length, past_length)
|
806 |
+
)
|
807 |
+
# TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
|
808 |
+
else:
|
809 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
810 |
+
max_cache_length = None
|
811 |
+
|
812 |
+
# Keep only the unprocessed tokens:
|
813 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
814 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as input)
|
815 |
+
if (
|
816 |
+
attention_mask is not None
|
817 |
+
and attention_mask.shape[1] > input_ids.shape[1]
|
818 |
+
):
|
819 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
820 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
821 |
+
# input_ids based on the past_length.
|
822 |
+
elif past_length < input_ids.shape[1]:
|
823 |
+
input_ids = input_ids[:, past_length:]
|
824 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
825 |
+
|
826 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
827 |
+
if (
|
828 |
+
max_cache_length is not None
|
829 |
+
and attention_mask is not None
|
830 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
831 |
+
):
|
832 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
833 |
+
|
834 |
+
position_ids = kwargs.get("position_ids", None)
|
835 |
+
if attention_mask is not None and position_ids is None:
|
836 |
+
# create position_ids on the fly for batch generation
|
837 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
838 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
839 |
+
if past_key_values:
|
840 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
841 |
+
|
842 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
843 |
+
if inputs_embeds is not None and past_key_values is None:
|
844 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
845 |
+
else:
|
846 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
847 |
+
# recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
|
848 |
+
# TODO: use `next_tokens` directly instead.
|
849 |
+
model_inputs = {"input_ids": input_ids.contiguous()}
|
850 |
+
|
851 |
+
input_length = (
|
852 |
+
position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
|
853 |
+
)
|
854 |
+
if cache_position is None:
|
855 |
+
cache_position = torch.arange(
|
856 |
+
past_length, past_length + input_length, device=input_ids.device
|
857 |
+
)
|
858 |
+
elif use_cache:
|
859 |
+
cache_position = cache_position[-input_length:]
|
860 |
+
|
861 |
+
model_inputs.update(
|
862 |
+
{
|
863 |
+
"position_ids": position_ids,
|
864 |
+
"cache_position": cache_position,
|
865 |
+
"past_key_values": past_key_values,
|
866 |
+
"use_cache": use_cache,
|
867 |
+
"attention_mask": attention_mask,
|
868 |
+
}
|
869 |
+
)
|
870 |
+
return model_inputs
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|