Alexander Chernyavskiy
commited on
Commit
•
acb8cd3
1
Parent(s):
6bf8958
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- PPO_LunarLander-v2.zip +3 -0
- PPO_LunarLander-v2/_stable_baselines3_version +1 -0
- PPO_LunarLander-v2/data +94 -0
- PPO_LunarLander-v2/policy.optimizer.pth +3 -0
- PPO_LunarLander-v2/policy.pth +3 -0
- PPO_LunarLander-v2/pytorch_variables.pth +3 -0
- PPO_LunarLander-v2/system_info.txt +7 -0
- README.md +28 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
PPO_LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d08ff0da31513e6d50b623b9d2cf481d7b033dd40910240092a2dc1be7917f1c
|
3 |
+
size 144005
|
PPO_LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
PPO_LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7efb146cb320>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efb146cb3b0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efb146cb440>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efb146cb4d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7efb146cb560>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7efb146cb5f0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efb146cb680>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7efb146cb710>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efb146cb7a0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efb146cb830>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7efb146cb8c0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7efb14770180>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 528000,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651951428.6976721,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOQ/PL9cRlU9EH5eu1XTiDvCgr8+Z96QvAAAgD8AAIA/g92BviPhJD+jONK8+waWvpOp+D1Oq3a9AAAAAAAAAACtHBI/e0KLvDBkMjx8KaE8OzZNvKt46TsAAIA/AACAPy0c1j70XUi9HvGXPH+5uTrV2CA+vhDNPAAAgD8AAIA/95AFv/um6Lz2jye+I1JmvvlLqDxHQJA/AACAPwAAgD/N7Dy7oFawP768Br1WrIW+pG59vGb/uL0AAAAAAAAAACb7Ij7KHCc/+FNlPWu2sb5NDRQ+vwADPQAAAAAAAAAAMIQrP6tZar7qDo09sa2QvFGdtj2e70g9AAAAAAAAAACA6hO/SyWwPlX4kL7KFcW+70DLvV/Ft70AAAAAAAAAAM1ggDyAaro/bV+ePsqQsz7z5xa880pPvAAAAAAAAAAAQJW1PUgpi7ogA+g7AFMRPBdr1juiI/e8AACAPwAAgD8z34S718Ngua4he7sJlJu8o8PYO+Yyvz0AAAAAAAAAAD3PaL6EI70+C5smvmfayL6TyQU+KLoUPgAAAAAAAAAATT+lPcNpfbpESrK7L0jhPCtEZrv6vL89AACAPwAAgD8UkRq/rBeePOHDzLoJnF04iKu1vfZ+2LkAAIA/AACAP92gJz/vfys/q6VOPv/wcL7GCF68JBOiPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.05600000000000005,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVYRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUz4EVaN5WcCUhpRSlIwBbJRL2owBdJRHQIxBRx3mmtR1fZQoaAZoCWgPQwg1mfG20hs2QJSGlFKUaBVLsGgWR0CMRe42jwhGdX2UKGgGaAloD0MId5/jo8VpQsCUhpRSlGgVTSMBaBZHQIxIvqs2ehB1fZQoaAZoCWgPQwhI3GPpQzBXQJSGlFKUaBVN6ANoFkdAjFY2P91loXV9lChoBmgJaA9DCKNbr+lB4R5AlIaUUpRoFU3oA2gWR0CMYTjU/fO2dX2UKGgGaAloD0MIzhYQWg/DScCUhpRSlGgVS/poFkdAjGXlqagElnV9lChoBmgJaA9DCLaF56Vih0JAlIaUUpRoFU3oA2gWR0CMaPrrxAjZdX2UKGgGaAloD0MISKgZUkUhQ8CUhpRSlGgVS8ZoFkdAjIHB73PAwnV9lChoBmgJaA9DCLMHWoEh8ypAlIaUUpRoFU3oA2gWR0CMhIn4wh4ddX2UKGgGaAloD0MIhbacS/EAYMCUhpRSlGgVTYQBaBZHQIyGD7hvR7Z1fZQoaAZoCWgPQwjcvHFSmD9GQJSGlFKUaBVN6ANoFkdAjIc2Ur08NnV9lChoBmgJaA9DCGq+Sj52Y05AlIaUUpRoFU3oA2gWR0CM88BhhH9WdX2UKGgGaAloD0MI/yPTodN9T8CUhpRSlGgVTegDaBZHQIz1uf7Jnxt1fZQoaAZoCWgPQwgAV7JjI3hNQJSGlFKUaBVN6ANoFkdAjPtXaJyhjHV9lChoBmgJaA9DCGJM+nspBD/AlIaUUpRoFUu5aBZHQI0Pdf7aZhN1fZQoaAZoCWgPQwjzk2qfjk8gwJSGlFKUaBVNCQFoFkdAjRlUOd5IH3V9lChoBmgJaA9DCIiDhChfgCfAlIaUUpRoFUvXaBZHQI0b7klu3tt1fZQoaAZoCWgPQwjiXMMMjRhXQJSGlFKUaBVN6ANoFkdAjSMzDXOGCnV9lChoBmgJaA9DCC7nUlxVKEpAlIaUUpRoFU3oA2gWR0CNJ3n27FsIdX2UKGgGaAloD0MIcm2oGOeUUECUhpRSlGgVTegDaBZHQI0ojkELYwt1fZQoaAZoCWgPQwjRd7eyRFVbQJSGlFKUaBVN6ANoFkdAjSoifHxSYXV9lChoBmgJaA9DCLDkKha/+05AlIaUUpRoFU3oA2gWR0CNL+fGuLaVdX2UKGgGaAloD0MIcAnAP6UgQMCUhpRSlGgVS/xoFkdAjTV2U8mrsHV9lChoBmgJaA9DCPooIy4AF1RAlIaUUpRoFU3oA2gWR0CNRkSvC/GmdX2UKGgGaAloD0MItykeF9WKQsCUhpRSlGgVS7NoFkdAjUcCmEXcg3V9lChoBmgJaA9DCHr+tFGdyVdAlIaUUpRoFU3oA2gWR0CNVwenyd4FdX2UKGgGaAloD0MIFD/G3DWgZMCUhpRSlGgVTX4BaBZHQI1XxjawljV1fZQoaAZoCWgPQwjlCYSdYqFFQJSGlFKUaBVLxGgWR0CNY5V5rxiHdX2UKGgGaAloD0MIzmxX6IPUWkCUhpRSlGgVTegDaBZHQI1mrbJwKjV1fZQoaAZoCWgPQwgZqfdUThM7QJSGlFKUaBVN6ANoFkdAjWmEIgNgB3V9lChoBmgJaA9DCBgjEoWWda+/lIaUUpRoFU1qAWgWR0CNfawHqu8sdX2UKGgGaAloD0MIMLsnD4s3YsCUhpRSlGgVTfoBaBZHQI1/t9nbqQl1fZQoaAZoCWgPQwjcDg2LUZRRQJSGlFKUaBVN6ANoFkdAjYBf6GgzxnV9lChoBmgJaA9DCO5brROXc1ZAlIaUUpRoFU3oA2gWR0CNgnGus90SdX2UKGgGaAloD0MIM/0S8db5JUCUhpRSlGgVTegDaBZHQI2Dqz7di2F1fZQoaAZoCWgPQwi+Mm/VdRAxwJSGlFKUaBVNLAFoFkdAjYTzINmUW3V9lChoBmgJaA9DCLmpgeZz5ldAlIaUUpRoFU3oA2gWR0CNhanrpqyodX2UKGgGaAloD0MIEvWCT3M6U8CUhpRSlGgVTUcBaBZHQI2HU7+1jRV1fZQoaAZoCWgPQwjOxHQhVkVkwJSGlFKUaBVNYAFoFkdAjZfP38GcF3V9lChoBmgJaA9DCFfQtMTKECTAlIaUUpRoFUvUaBZHQI2YknCwbER1fZQoaAZoCWgPQwjg2LPnMnU7QJSGlFKUaBVL+mgWR0CNm+NHYpUhdX2UKGgGaAloD0MIWipvRzh9LECUhpRSlGgVS/RoFkdAjZ83eFcps3V9lChoBmgJaA9DCKkUOxqHuiDAlIaUUpRoFU0DAWgWR0CNnzw71ZkkdX2UKGgGaAloD0MIoPoHkQynT0CUhpRSlGgVTegDaBZHQI2j8Z5zHS51fZQoaAZoCWgPQwhgWz/9Z1JhQJSGlFKUaBVN6ANoFkdAjaW+I2wV03V9lChoBmgJaA9DCEfJq3MMgkTAlIaUUpRoFU0gAWgWR0CNpeClJpWWdX2UKGgGaAloD0MItafknNiMVMCUhpRSlGgVTUIBaBZHQI2rdTWGyop1fZQoaAZoCWgPQwh81cqEXzJIQJSGlFKUaBVN6ANoFkdAja1MRHww03V9lChoBmgJaA9DCDm3CffK9FFAlIaUUpRoFU3oA2gWR0CNrfn3cpLFdX2UKGgGaAloD0MI3QcgtYlfVUCUhpRSlGgVTegDaBZHQI2vNJ8OTaF1fZQoaAZoCWgPQwhtHofB/HFcwJSGlFKUaBVNVgFoFkdAja9jFyaNM3V9lChoBmgJaA9DCIs08Q7wRkrAlIaUUpRoFUv9aBZHQI2z9S0jTrp1fZQoaAZoCWgPQwitodReRDsmwJSGlFKUaBVLsWgWR0CNtu8PnSv1dX2UKGgGaAloD0MIwoU8ghueUcCUhpRSlGgVS/toFkdAjbj75Ec81XV9lChoBmgJaA9DCBnnb0Ihgu4/lIaUUpRoFU0XAWgWR0CNu6yHmA9WdX2UKGgGaAloD0MIpWjlXmCuPMCUhpRSlGgVTQIBaBZHQI2+rBdld1N1fZQoaAZoCWgPQwjGTngJTn9HQJSGlFKUaBVLxWgWR0CNv8H6dlNDdX2UKGgGaAloD0MIVaNXA5T+KECUhpRSlGgVTWcBaBZHQI3A7D0lJH11fZQoaAZoCWgPQwhjmuleJ4ZRwJSGlFKUaBVNIwFoFkdAjccZa/yoXXV9lChoBmgJaA9DCOJ2aFiM0kHAlIaUUpRoFU03AWgWR0CNyzywOe8PdX2UKGgGaAloD0MIfqzgtyGWHUCUhpRSlGgVS65oFkdAjc3b3XZoPHV9lChoBmgJaA9DCIWzW8tkCFTAlIaUUpRoFU0xAWgWR0CN021YQrc1dX2UKGgGaAloD0MIQnbexmbBV0CUhpRSlGgVTegDaBZHQI3Z0kOZssR1fZQoaAZoCWgPQwggCmZMwUpMwJSGlFKUaBVNSAFoFkdAjdpSUcGTtHV9lChoBmgJaA9DCChjfJi93DHAlIaUUpRoFUvhaBZHQI3ac0cfeUJ1fZQoaAZoCWgPQwjF5XgFooNWQJSGlFKUaBVN6ANoFkdAjdwLt3OfNHV9lChoBmgJaA9DCJFfP8SGRmbAlIaUUpRoFU0fAWgWR0CN369PDYRNdX2UKGgGaAloD0MInn3lQXoCTcCUhpRSlGgVTUsBaBZHQI3tcxqO9391fZQoaAZoCWgPQwj4G+244QcSwJSGlFKUaBVL8WgWR0CN76wM6RyPdX2UKGgGaAloD0MIGXPXEvIVRsCUhpRSlGgVS71oFkdAjfJHjABT43V9lChoBmgJaA9DCKD5nLtd8zHAlIaUUpRoFUvUaBZHQI3zdjVhCt11fZQoaAZoCWgPQwh79fHQd0VYQJSGlFKUaBVN6ANoFkdAjfQijk+5fHV9lChoBmgJaA9DCHMSSl8I6TnAlIaUUpRoFUvcaBZHQI30ZDPWxyJ1fZQoaAZoCWgPQwjueJPfomFcQJSGlFKUaBVN6ANoFkdAjgxTTF2mpHV9lChoBmgJaA9DCGLYYUz6CUdAlIaUUpRoFUvNaBZHQI4Q7vRZ2ZB1fZQoaAZoCWgPQwi8IY0KnOQuQJSGlFKUaBVL92gWR0COFVag2606dX2UKGgGaAloD0MIXK/pQUHKUsCUhpRSlGgVS/poFkdAjhhVU2kzoHV9lChoBmgJaA9DCDscXaW7qzxAlIaUUpRoFU3oA2gWR0COGeL9deIEdX2UKGgGaAloD0MI3PP8aaM/WsCUhpRSlGgVTXkBaBZHQI4iejKxLTR1fZQoaAZoCWgPQwgzUBn/PjhcQJSGlFKUaBVN6ANoFkdAjieAd4mkWXV9lChoBmgJaA9DCBk3NdB8Lh5AlIaUUpRoFU3oA2gWR0COJ86IWP92dX2UKGgGaAloD0MIaxFRTN54PsCUhpRSlGgVS7ZoFkdAjiqkFnqVyHV9lChoBmgJaA9DCGtKsg5HpU5AlIaUUpRoFU3oA2gWR0CONo9q1w5vdX2UKGgGaAloD0MIe90iMNYvSMCUhpRSlGgVTSsBaBZHQI49zQb+98J1fZQoaAZoCWgPQwiXAWcpWeJCQJSGlFKUaBVN6ANoFkdAjj5UbDMvAXV9lChoBmgJaA9DCHszar5Kxi/AlIaUUpRoFUv+aBZHQI5EA/LTx5N1fZQoaAZoCWgPQwg+XHLcKT1BwJSGlFKUaBVL3mgWR0COR5E4vN/wdX2UKGgGaAloD0MIIjSCjeufAECUhpRSlGgVS/ZoFkdAjkezfJmuknV9lChoBmgJaA9DCJmEC3kEc0tAlIaUUpRoFU3oA2gWR0COTV5RCQcQdX2UKGgGaAloD0MIDJOpglFJ0T+UhpRSlGgVTegDaBZHQI5QMal1r7B1fZQoaAZoCWgPQwicqKW5Ff1gwJSGlFKUaBVNoQFoFkdAjlBTp5eJHnV9lChoBmgJaA9DCMMRpFLsCArAlIaUUpRoFU0aAWgWR0COWb+jM3ZPdX2UKGgGaAloD0MIt39lpUnFNUCUhpRSlGgVTegDaBZHQI5cTC79Q411fZQoaAZoCWgPQwis4LchxlspwJSGlFKUaBVLyWgWR0COYDDFZPl/dX2UKGgGaAloD0MIr5P6srTXMMCUhpRSlGgVTRgBaBZHQI5gSlYU34t1fZQoaAZoCWgPQwj68CxBRl5JQJSGlFKUaBVN6ANoFkdAjmLxd6cAinV9lChoBmgJaA9DCIBKlSh7hV3AlIaUUpRoFU1sA2gWR0COY+Vk+X7cdX2UKGgGaAloD0MIeQQ3UrbAUcCUhpRSlGgVS71oFkdAjmZsC9ytFXV9lChoBmgJaA9DCHzWNVoOPCjAlIaUUpRoFUvsaBZHQI51CqIacZt1fZQoaAZoCWgPQwgxQ+OJIBJWQJSGlFKUaBVN6ANoFkdAjnUwk5ZKWnVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 44,
|
79 |
+
"n_steps": 3000,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
PPO_LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6953ad89705c259ef32b35ac5ac76e401f2174e44b858ab0a6d3c75e15562186
|
3 |
+
size 84829
|
PPO_LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6771df4b589325e1a030e15afe829e9235db5bc31c88b7d6c16966eb312025da
|
3 |
+
size 43201
|
PPO_LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
PPO_LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -160.12 +/- 44.18
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efb146cb320>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efb146cb3b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efb146cb440>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efb146cb4d0>", "_build": "<function ActorCriticPolicy._build at 0x7efb146cb560>", "forward": "<function ActorCriticPolicy.forward at 0x7efb146cb5f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efb146cb680>", "_predict": "<function ActorCriticPolicy._predict at 0x7efb146cb710>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efb146cb7a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efb146cb830>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efb146cb8c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7efb14770180>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 528000, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651951428.6976721, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOQ/PL9cRlU9EH5eu1XTiDvCgr8+Z96QvAAAgD8AAIA/g92BviPhJD+jONK8+waWvpOp+D1Oq3a9AAAAAAAAAACtHBI/e0KLvDBkMjx8KaE8OzZNvKt46TsAAIA/AACAPy0c1j70XUi9HvGXPH+5uTrV2CA+vhDNPAAAgD8AAIA/95AFv/um6Lz2jye+I1JmvvlLqDxHQJA/AACAPwAAgD/N7Dy7oFawP768Br1WrIW+pG59vGb/uL0AAAAAAAAAACb7Ij7KHCc/+FNlPWu2sb5NDRQ+vwADPQAAAAAAAAAAMIQrP6tZar7qDo09sa2QvFGdtj2e70g9AAAAAAAAAACA6hO/SyWwPlX4kL7KFcW+70DLvV/Ft70AAAAAAAAAAM1ggDyAaro/bV+ePsqQsz7z5xa880pPvAAAAAAAAAAAQJW1PUgpi7ogA+g7AFMRPBdr1juiI/e8AACAPwAAgD8z34S718Ngua4he7sJlJu8o8PYO+Yyvz0AAAAAAAAAAD3PaL6EI70+C5smvmfayL6TyQU+KLoUPgAAAAAAAAAATT+lPcNpfbpESrK7L0jhPCtEZrv6vL89AACAPwAAgD8UkRq/rBeePOHDzLoJnF04iKu1vfZ+2LkAAIA/AACAP92gJz/vfys/q6VOPv/wcL7GCF68JBOiPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.05600000000000005, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVYRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUz4EVaN5WcCUhpRSlIwBbJRL2owBdJRHQIxBRx3mmtR1fZQoaAZoCWgPQwg1mfG20hs2QJSGlFKUaBVLsGgWR0CMRe42jwhGdX2UKGgGaAloD0MId5/jo8VpQsCUhpRSlGgVTSMBaBZHQIxIvqs2ehB1fZQoaAZoCWgPQwhI3GPpQzBXQJSGlFKUaBVN6ANoFkdAjFY2P91loXV9lChoBmgJaA9DCKNbr+lB4R5AlIaUUpRoFU3oA2gWR0CMYTjU/fO2dX2UKGgGaAloD0MIzhYQWg/DScCUhpRSlGgVS/poFkdAjGXlqagElnV9lChoBmgJaA9DCLaF56Vih0JAlIaUUpRoFU3oA2gWR0CMaPrrxAjZdX2UKGgGaAloD0MISKgZUkUhQ8CUhpRSlGgVS8ZoFkdAjIHB73PAwnV9lChoBmgJaA9DCLMHWoEh8ypAlIaUUpRoFU3oA2gWR0CMhIn4wh4ddX2UKGgGaAloD0MIhbacS/EAYMCUhpRSlGgVTYQBaBZHQIyGD7hvR7Z1fZQoaAZoCWgPQwjcvHFSmD9GQJSGlFKUaBVN6ANoFkdAjIc2Ur08NnV9lChoBmgJaA9DCGq+Sj52Y05AlIaUUpRoFU3oA2gWR0CM88BhhH9WdX2UKGgGaAloD0MI/yPTodN9T8CUhpRSlGgVTegDaBZHQIz1uf7Jnxt1fZQoaAZoCWgPQwgAV7JjI3hNQJSGlFKUaBVN6ANoFkdAjPtXaJyhjHV9lChoBmgJaA9DCGJM+nspBD/AlIaUUpRoFUu5aBZHQI0Pdf7aZhN1fZQoaAZoCWgPQwjzk2qfjk8gwJSGlFKUaBVNCQFoFkdAjRlUOd5IH3V9lChoBmgJaA9DCIiDhChfgCfAlIaUUpRoFUvXaBZHQI0b7klu3tt1fZQoaAZoCWgPQwjiXMMMjRhXQJSGlFKUaBVN6ANoFkdAjSMzDXOGCnV9lChoBmgJaA9DCC7nUlxVKEpAlIaUUpRoFU3oA2gWR0CNJ3n27FsIdX2UKGgGaAloD0MIcm2oGOeUUECUhpRSlGgVTegDaBZHQI0ojkELYwt1fZQoaAZoCWgPQwjRd7eyRFVbQJSGlFKUaBVN6ANoFkdAjSoifHxSYXV9lChoBmgJaA9DCLDkKha/+05AlIaUUpRoFU3oA2gWR0CNL+fGuLaVdX2UKGgGaAloD0MIcAnAP6UgQMCUhpRSlGgVS/xoFkdAjTV2U8mrsHV9lChoBmgJaA9DCPooIy4AF1RAlIaUUpRoFU3oA2gWR0CNRkSvC/GmdX2UKGgGaAloD0MItykeF9WKQsCUhpRSlGgVS7NoFkdAjUcCmEXcg3V9lChoBmgJaA9DCHr+tFGdyVdAlIaUUpRoFU3oA2gWR0CNVwenyd4FdX2UKGgGaAloD0MIFD/G3DWgZMCUhpRSlGgVTX4BaBZHQI1XxjawljV1fZQoaAZoCWgPQwjlCYSdYqFFQJSGlFKUaBVLxGgWR0CNY5V5rxiHdX2UKGgGaAloD0MIzmxX6IPUWkCUhpRSlGgVTegDaBZHQI1mrbJwKjV1fZQoaAZoCWgPQwgZqfdUThM7QJSGlFKUaBVN6ANoFkdAjWmEIgNgB3V9lChoBmgJaA9DCBgjEoWWda+/lIaUUpRoFU1qAWgWR0CNfawHqu8sdX2UKGgGaAloD0MIMLsnD4s3YsCUhpRSlGgVTfoBaBZHQI1/t9nbqQl1fZQoaAZoCWgPQwjcDg2LUZRRQJSGlFKUaBVN6ANoFkdAjYBf6GgzxnV9lChoBmgJaA9DCO5brROXc1ZAlIaUUpRoFU3oA2gWR0CNgnGus90SdX2UKGgGaAloD0MIM/0S8db5JUCUhpRSlGgVTegDaBZHQI2Dqz7di2F1fZQoaAZoCWgPQwi+Mm/VdRAxwJSGlFKUaBVNLAFoFkdAjYTzINmUW3V9lChoBmgJaA9DCLmpgeZz5ldAlIaUUpRoFU3oA2gWR0CNhanrpqyodX2UKGgGaAloD0MIEvWCT3M6U8CUhpRSlGgVTUcBaBZHQI2HU7+1jRV1fZQoaAZoCWgPQwjOxHQhVkVkwJSGlFKUaBVNYAFoFkdAjZfP38GcF3V9lChoBmgJaA9DCFfQtMTKECTAlIaUUpRoFUvUaBZHQI2YknCwbER1fZQoaAZoCWgPQwjg2LPnMnU7QJSGlFKUaBVL+mgWR0CNm+NHYpUhdX2UKGgGaAloD0MIWipvRzh9LECUhpRSlGgVS/RoFkdAjZ83eFcps3V9lChoBmgJaA9DCKkUOxqHuiDAlIaUUpRoFU0DAWgWR0CNnzw71ZkkdX2UKGgGaAloD0MIoPoHkQynT0CUhpRSlGgVTegDaBZHQI2j8Z5zHS51fZQoaAZoCWgPQwhgWz/9Z1JhQJSGlFKUaBVN6ANoFkdAjaW+I2wV03V9lChoBmgJaA9DCEfJq3MMgkTAlIaUUpRoFU0gAWgWR0CNpeClJpWWdX2UKGgGaAloD0MItafknNiMVMCUhpRSlGgVTUIBaBZHQI2rdTWGyop1fZQoaAZoCWgPQwh81cqEXzJIQJSGlFKUaBVN6ANoFkdAja1MRHww03V9lChoBmgJaA9DCDm3CffK9FFAlIaUUpRoFU3oA2gWR0CNrfn3cpLFdX2UKGgGaAloD0MI3QcgtYlfVUCUhpRSlGgVTegDaBZHQI2vNJ8OTaF1fZQoaAZoCWgPQwhtHofB/HFcwJSGlFKUaBVNVgFoFkdAja9jFyaNM3V9lChoBmgJaA9DCIs08Q7wRkrAlIaUUpRoFUv9aBZHQI2z9S0jTrp1fZQoaAZoCWgPQwitodReRDsmwJSGlFKUaBVLsWgWR0CNtu8PnSv1dX2UKGgGaAloD0MIwoU8ghueUcCUhpRSlGgVS/toFkdAjbj75Ec81XV9lChoBmgJaA9DCBnnb0Ihgu4/lIaUUpRoFU0XAWgWR0CNu6yHmA9WdX2UKGgGaAloD0MIpWjlXmCuPMCUhpRSlGgVTQIBaBZHQI2+rBdld1N1fZQoaAZoCWgPQwjGTngJTn9HQJSGlFKUaBVLxWgWR0CNv8H6dlNDdX2UKGgGaAloD0MIVaNXA5T+KECUhpRSlGgVTWcBaBZHQI3A7D0lJH11fZQoaAZoCWgPQwhjmuleJ4ZRwJSGlFKUaBVNIwFoFkdAjccZa/yoXXV9lChoBmgJaA9DCOJ2aFiM0kHAlIaUUpRoFU03AWgWR0CNyzywOe8PdX2UKGgGaAloD0MIfqzgtyGWHUCUhpRSlGgVS65oFkdAjc3b3XZoPHV9lChoBmgJaA9DCIWzW8tkCFTAlIaUUpRoFU0xAWgWR0CN021YQrc1dX2UKGgGaAloD0MIQnbexmbBV0CUhpRSlGgVTegDaBZHQI3Z0kOZssR1fZQoaAZoCWgPQwggCmZMwUpMwJSGlFKUaBVNSAFoFkdAjdpSUcGTtHV9lChoBmgJaA9DCChjfJi93DHAlIaUUpRoFUvhaBZHQI3ac0cfeUJ1fZQoaAZoCWgPQwjF5XgFooNWQJSGlFKUaBVN6ANoFkdAjdwLt3OfNHV9lChoBmgJaA9DCJFfP8SGRmbAlIaUUpRoFU0fAWgWR0CN369PDYRNdX2UKGgGaAloD0MInn3lQXoCTcCUhpRSlGgVTUsBaBZHQI3tcxqO9391fZQoaAZoCWgPQwj4G+244QcSwJSGlFKUaBVL8WgWR0CN76wM6RyPdX2UKGgGaAloD0MIGXPXEvIVRsCUhpRSlGgVS71oFkdAjfJHjABT43V9lChoBmgJaA9DCKD5nLtd8zHAlIaUUpRoFUvUaBZHQI3zdjVhCt11fZQoaAZoCWgPQwh79fHQd0VYQJSGlFKUaBVN6ANoFkdAjfQijk+5fHV9lChoBmgJaA9DCHMSSl8I6TnAlIaUUpRoFUvcaBZHQI30ZDPWxyJ1fZQoaAZoCWgPQwjueJPfomFcQJSGlFKUaBVN6ANoFkdAjgxTTF2mpHV9lChoBmgJaA9DCGLYYUz6CUdAlIaUUpRoFUvNaBZHQI4Q7vRZ2ZB1fZQoaAZoCWgPQwi8IY0KnOQuQJSGlFKUaBVL92gWR0COFVag2606dX2UKGgGaAloD0MIXK/pQUHKUsCUhpRSlGgVS/poFkdAjhhVU2kzoHV9lChoBmgJaA9DCDscXaW7qzxAlIaUUpRoFU3oA2gWR0COGeL9deIEdX2UKGgGaAloD0MI3PP8aaM/WsCUhpRSlGgVTXkBaBZHQI4iejKxLTR1fZQoaAZoCWgPQwgzUBn/PjhcQJSGlFKUaBVN6ANoFkdAjieAd4mkWXV9lChoBmgJaA9DCBk3NdB8Lh5AlIaUUpRoFU3oA2gWR0COJ86IWP92dX2UKGgGaAloD0MIaxFRTN54PsCUhpRSlGgVS7ZoFkdAjiqkFnqVyHV9lChoBmgJaA9DCGtKsg5HpU5AlIaUUpRoFU3oA2gWR0CONo9q1w5vdX2UKGgGaAloD0MIe90iMNYvSMCUhpRSlGgVTSsBaBZHQI49zQb+98J1fZQoaAZoCWgPQwiXAWcpWeJCQJSGlFKUaBVN6ANoFkdAjj5UbDMvAXV9lChoBmgJaA9DCHszar5Kxi/AlIaUUpRoFUv+aBZHQI5EA/LTx5N1fZQoaAZoCWgPQwg+XHLcKT1BwJSGlFKUaBVL3mgWR0COR5E4vN/wdX2UKGgGaAloD0MIIjSCjeufAECUhpRSlGgVS/ZoFkdAjkezfJmuknV9lChoBmgJaA9DCJmEC3kEc0tAlIaUUpRoFU3oA2gWR0COTV5RCQcQdX2UKGgGaAloD0MIDJOpglFJ0T+UhpRSlGgVTegDaBZHQI5QMal1r7B1fZQoaAZoCWgPQwicqKW5Ff1gwJSGlFKUaBVNoQFoFkdAjlBTp5eJHnV9lChoBmgJaA9DCMMRpFLsCArAlIaUUpRoFU0aAWgWR0COWb+jM3ZPdX2UKGgGaAloD0MIt39lpUnFNUCUhpRSlGgVTegDaBZHQI5cTC79Q411fZQoaAZoCWgPQwis4LchxlspwJSGlFKUaBVLyWgWR0COYDDFZPl/dX2UKGgGaAloD0MIr5P6srTXMMCUhpRSlGgVTRgBaBZHQI5gSlYU34t1fZQoaAZoCWgPQwj68CxBRl5JQJSGlFKUaBVN6ANoFkdAjmLxd6cAinV9lChoBmgJaA9DCIBKlSh7hV3AlIaUUpRoFU1sA2gWR0COY+Vk+X7cdX2UKGgGaAloD0MIeQQ3UrbAUcCUhpRSlGgVS71oFkdAjmZsC9ytFXV9lChoBmgJaA9DCHzWNVoOPCjAlIaUUpRoFUvsaBZHQI51CqIacZt1fZQoaAZoCWgPQwgxQ+OJIBJWQJSGlFKUaBVN6ANoFkdAjnUwk5ZKWnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 44, "n_steps": 3000, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:18f1cf0da9255e21ace30c0fc419d73b28fd445e2489570ceb5d991de18a69d3
|
3 |
+
size 259762
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -160.11789308850422, "std_reward": 44.18011828028374, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T19:32:49.068048"}
|