Alexander Chernyavskiy commited on
Commit
acb8cd3
1 Parent(s): 6bf8958

Upload PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
PPO_LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d08ff0da31513e6d50b623b9d2cf481d7b033dd40910240092a2dc1be7917f1c
3
+ size 144005
PPO_LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
PPO_LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7efb146cb320>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efb146cb3b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efb146cb440>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efb146cb4d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7efb146cb560>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7efb146cb5f0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efb146cb680>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7efb146cb710>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efb146cb7a0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efb146cb830>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efb146cb8c0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7efb14770180>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 528000,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651951428.6976721,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOQ/PL9cRlU9EH5eu1XTiDvCgr8+Z96QvAAAgD8AAIA/g92BviPhJD+jONK8+waWvpOp+D1Oq3a9AAAAAAAAAACtHBI/e0KLvDBkMjx8KaE8OzZNvKt46TsAAIA/AACAPy0c1j70XUi9HvGXPH+5uTrV2CA+vhDNPAAAgD8AAIA/95AFv/um6Lz2jye+I1JmvvlLqDxHQJA/AACAPwAAgD/N7Dy7oFawP768Br1WrIW+pG59vGb/uL0AAAAAAAAAACb7Ij7KHCc/+FNlPWu2sb5NDRQ+vwADPQAAAAAAAAAAMIQrP6tZar7qDo09sa2QvFGdtj2e70g9AAAAAAAAAACA6hO/SyWwPlX4kL7KFcW+70DLvV/Ft70AAAAAAAAAAM1ggDyAaro/bV+ePsqQsz7z5xa880pPvAAAAAAAAAAAQJW1PUgpi7ogA+g7AFMRPBdr1juiI/e8AACAPwAAgD8z34S718Ngua4he7sJlJu8o8PYO+Yyvz0AAAAAAAAAAD3PaL6EI70+C5smvmfayL6TyQU+KLoUPgAAAAAAAAAATT+lPcNpfbpESrK7L0jhPCtEZrv6vL89AACAPwAAgD8UkRq/rBeePOHDzLoJnF04iKu1vfZ+2LkAAIA/AACAP92gJz/vfys/q6VOPv/wcL7GCF68JBOiPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.05600000000000005,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVYRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUz4EVaN5WcCUhpRSlIwBbJRL2owBdJRHQIxBRx3mmtR1fZQoaAZoCWgPQwg1mfG20hs2QJSGlFKUaBVLsGgWR0CMRe42jwhGdX2UKGgGaAloD0MId5/jo8VpQsCUhpRSlGgVTSMBaBZHQIxIvqs2ehB1fZQoaAZoCWgPQwhI3GPpQzBXQJSGlFKUaBVN6ANoFkdAjFY2P91loXV9lChoBmgJaA9DCKNbr+lB4R5AlIaUUpRoFU3oA2gWR0CMYTjU/fO2dX2UKGgGaAloD0MIzhYQWg/DScCUhpRSlGgVS/poFkdAjGXlqagElnV9lChoBmgJaA9DCLaF56Vih0JAlIaUUpRoFU3oA2gWR0CMaPrrxAjZdX2UKGgGaAloD0MISKgZUkUhQ8CUhpRSlGgVS8ZoFkdAjIHB73PAwnV9lChoBmgJaA9DCLMHWoEh8ypAlIaUUpRoFU3oA2gWR0CMhIn4wh4ddX2UKGgGaAloD0MIhbacS/EAYMCUhpRSlGgVTYQBaBZHQIyGD7hvR7Z1fZQoaAZoCWgPQwjcvHFSmD9GQJSGlFKUaBVN6ANoFkdAjIc2Ur08NnV9lChoBmgJaA9DCGq+Sj52Y05AlIaUUpRoFU3oA2gWR0CM88BhhH9WdX2UKGgGaAloD0MI/yPTodN9T8CUhpRSlGgVTegDaBZHQIz1uf7Jnxt1fZQoaAZoCWgPQwgAV7JjI3hNQJSGlFKUaBVN6ANoFkdAjPtXaJyhjHV9lChoBmgJaA9DCGJM+nspBD/AlIaUUpRoFUu5aBZHQI0Pdf7aZhN1fZQoaAZoCWgPQwjzk2qfjk8gwJSGlFKUaBVNCQFoFkdAjRlUOd5IH3V9lChoBmgJaA9DCIiDhChfgCfAlIaUUpRoFUvXaBZHQI0b7klu3tt1fZQoaAZoCWgPQwjiXMMMjRhXQJSGlFKUaBVN6ANoFkdAjSMzDXOGCnV9lChoBmgJaA9DCC7nUlxVKEpAlIaUUpRoFU3oA2gWR0CNJ3n27FsIdX2UKGgGaAloD0MIcm2oGOeUUECUhpRSlGgVTegDaBZHQI0ojkELYwt1fZQoaAZoCWgPQwjRd7eyRFVbQJSGlFKUaBVN6ANoFkdAjSoifHxSYXV9lChoBmgJaA9DCLDkKha/+05AlIaUUpRoFU3oA2gWR0CNL+fGuLaVdX2UKGgGaAloD0MIcAnAP6UgQMCUhpRSlGgVS/xoFkdAjTV2U8mrsHV9lChoBmgJaA9DCPooIy4AF1RAlIaUUpRoFU3oA2gWR0CNRkSvC/GmdX2UKGgGaAloD0MItykeF9WKQsCUhpRSlGgVS7NoFkdAjUcCmEXcg3V9lChoBmgJaA9DCHr+tFGdyVdAlIaUUpRoFU3oA2gWR0CNVwenyd4FdX2UKGgGaAloD0MIFD/G3DWgZMCUhpRSlGgVTX4BaBZHQI1XxjawljV1fZQoaAZoCWgPQwjlCYSdYqFFQJSGlFKUaBVLxGgWR0CNY5V5rxiHdX2UKGgGaAloD0MIzmxX6IPUWkCUhpRSlGgVTegDaBZHQI1mrbJwKjV1fZQoaAZoCWgPQwgZqfdUThM7QJSGlFKUaBVN6ANoFkdAjWmEIgNgB3V9lChoBmgJaA9DCBgjEoWWda+/lIaUUpRoFU1qAWgWR0CNfawHqu8sdX2UKGgGaAloD0MIMLsnD4s3YsCUhpRSlGgVTfoBaBZHQI1/t9nbqQl1fZQoaAZoCWgPQwjcDg2LUZRRQJSGlFKUaBVN6ANoFkdAjYBf6GgzxnV9lChoBmgJaA9DCO5brROXc1ZAlIaUUpRoFU3oA2gWR0CNgnGus90SdX2UKGgGaAloD0MIM/0S8db5JUCUhpRSlGgVTegDaBZHQI2Dqz7di2F1fZQoaAZoCWgPQwi+Mm/VdRAxwJSGlFKUaBVNLAFoFkdAjYTzINmUW3V9lChoBmgJaA9DCLmpgeZz5ldAlIaUUpRoFU3oA2gWR0CNhanrpqyodX2UKGgGaAloD0MIEvWCT3M6U8CUhpRSlGgVTUcBaBZHQI2HU7+1jRV1fZQoaAZoCWgPQwjOxHQhVkVkwJSGlFKUaBVNYAFoFkdAjZfP38GcF3V9lChoBmgJaA9DCFfQtMTKECTAlIaUUpRoFUvUaBZHQI2YknCwbER1fZQoaAZoCWgPQwjg2LPnMnU7QJSGlFKUaBVL+mgWR0CNm+NHYpUhdX2UKGgGaAloD0MIWipvRzh9LECUhpRSlGgVS/RoFkdAjZ83eFcps3V9lChoBmgJaA9DCKkUOxqHuiDAlIaUUpRoFU0DAWgWR0CNnzw71ZkkdX2UKGgGaAloD0MIoPoHkQynT0CUhpRSlGgVTegDaBZHQI2j8Z5zHS51fZQoaAZoCWgPQwhgWz/9Z1JhQJSGlFKUaBVN6ANoFkdAjaW+I2wV03V9lChoBmgJaA9DCEfJq3MMgkTAlIaUUpRoFU0gAWgWR0CNpeClJpWWdX2UKGgGaAloD0MItafknNiMVMCUhpRSlGgVTUIBaBZHQI2rdTWGyop1fZQoaAZoCWgPQwh81cqEXzJIQJSGlFKUaBVN6ANoFkdAja1MRHww03V9lChoBmgJaA9DCDm3CffK9FFAlIaUUpRoFU3oA2gWR0CNrfn3cpLFdX2UKGgGaAloD0MI3QcgtYlfVUCUhpRSlGgVTegDaBZHQI2vNJ8OTaF1fZQoaAZoCWgPQwhtHofB/HFcwJSGlFKUaBVNVgFoFkdAja9jFyaNM3V9lChoBmgJaA9DCIs08Q7wRkrAlIaUUpRoFUv9aBZHQI2z9S0jTrp1fZQoaAZoCWgPQwitodReRDsmwJSGlFKUaBVLsWgWR0CNtu8PnSv1dX2UKGgGaAloD0MIwoU8ghueUcCUhpRSlGgVS/toFkdAjbj75Ec81XV9lChoBmgJaA9DCBnnb0Ihgu4/lIaUUpRoFU0XAWgWR0CNu6yHmA9WdX2UKGgGaAloD0MIpWjlXmCuPMCUhpRSlGgVTQIBaBZHQI2+rBdld1N1fZQoaAZoCWgPQwjGTngJTn9HQJSGlFKUaBVLxWgWR0CNv8H6dlNDdX2UKGgGaAloD0MIVaNXA5T+KECUhpRSlGgVTWcBaBZHQI3A7D0lJH11fZQoaAZoCWgPQwhjmuleJ4ZRwJSGlFKUaBVNIwFoFkdAjccZa/yoXXV9lChoBmgJaA9DCOJ2aFiM0kHAlIaUUpRoFU03AWgWR0CNyzywOe8PdX2UKGgGaAloD0MIfqzgtyGWHUCUhpRSlGgVS65oFkdAjc3b3XZoPHV9lChoBmgJaA9DCIWzW8tkCFTAlIaUUpRoFU0xAWgWR0CN021YQrc1dX2UKGgGaAloD0MIQnbexmbBV0CUhpRSlGgVTegDaBZHQI3Z0kOZssR1fZQoaAZoCWgPQwggCmZMwUpMwJSGlFKUaBVNSAFoFkdAjdpSUcGTtHV9lChoBmgJaA9DCChjfJi93DHAlIaUUpRoFUvhaBZHQI3ac0cfeUJ1fZQoaAZoCWgPQwjF5XgFooNWQJSGlFKUaBVN6ANoFkdAjdwLt3OfNHV9lChoBmgJaA9DCJFfP8SGRmbAlIaUUpRoFU0fAWgWR0CN369PDYRNdX2UKGgGaAloD0MInn3lQXoCTcCUhpRSlGgVTUsBaBZHQI3tcxqO9391fZQoaAZoCWgPQwj4G+244QcSwJSGlFKUaBVL8WgWR0CN76wM6RyPdX2UKGgGaAloD0MIGXPXEvIVRsCUhpRSlGgVS71oFkdAjfJHjABT43V9lChoBmgJaA9DCKD5nLtd8zHAlIaUUpRoFUvUaBZHQI3zdjVhCt11fZQoaAZoCWgPQwh79fHQd0VYQJSGlFKUaBVN6ANoFkdAjfQijk+5fHV9lChoBmgJaA9DCHMSSl8I6TnAlIaUUpRoFUvcaBZHQI30ZDPWxyJ1fZQoaAZoCWgPQwjueJPfomFcQJSGlFKUaBVN6ANoFkdAjgxTTF2mpHV9lChoBmgJaA9DCGLYYUz6CUdAlIaUUpRoFUvNaBZHQI4Q7vRZ2ZB1fZQoaAZoCWgPQwi8IY0KnOQuQJSGlFKUaBVL92gWR0COFVag2606dX2UKGgGaAloD0MIXK/pQUHKUsCUhpRSlGgVS/poFkdAjhhVU2kzoHV9lChoBmgJaA9DCDscXaW7qzxAlIaUUpRoFU3oA2gWR0COGeL9deIEdX2UKGgGaAloD0MI3PP8aaM/WsCUhpRSlGgVTXkBaBZHQI4iejKxLTR1fZQoaAZoCWgPQwgzUBn/PjhcQJSGlFKUaBVN6ANoFkdAjieAd4mkWXV9lChoBmgJaA9DCBk3NdB8Lh5AlIaUUpRoFU3oA2gWR0COJ86IWP92dX2UKGgGaAloD0MIaxFRTN54PsCUhpRSlGgVS7ZoFkdAjiqkFnqVyHV9lChoBmgJaA9DCGtKsg5HpU5AlIaUUpRoFU3oA2gWR0CONo9q1w5vdX2UKGgGaAloD0MIe90iMNYvSMCUhpRSlGgVTSsBaBZHQI49zQb+98J1fZQoaAZoCWgPQwiXAWcpWeJCQJSGlFKUaBVN6ANoFkdAjj5UbDMvAXV9lChoBmgJaA9DCHszar5Kxi/AlIaUUpRoFUv+aBZHQI5EA/LTx5N1fZQoaAZoCWgPQwg+XHLcKT1BwJSGlFKUaBVL3mgWR0COR5E4vN/wdX2UKGgGaAloD0MIIjSCjeufAECUhpRSlGgVS/ZoFkdAjkezfJmuknV9lChoBmgJaA9DCJmEC3kEc0tAlIaUUpRoFU3oA2gWR0COTV5RCQcQdX2UKGgGaAloD0MIDJOpglFJ0T+UhpRSlGgVTegDaBZHQI5QMal1r7B1fZQoaAZoCWgPQwicqKW5Ff1gwJSGlFKUaBVNoQFoFkdAjlBTp5eJHnV9lChoBmgJaA9DCMMRpFLsCArAlIaUUpRoFU0aAWgWR0COWb+jM3ZPdX2UKGgGaAloD0MIt39lpUnFNUCUhpRSlGgVTegDaBZHQI5cTC79Q411fZQoaAZoCWgPQwis4LchxlspwJSGlFKUaBVLyWgWR0COYDDFZPl/dX2UKGgGaAloD0MIr5P6srTXMMCUhpRSlGgVTRgBaBZHQI5gSlYU34t1fZQoaAZoCWgPQwj68CxBRl5JQJSGlFKUaBVN6ANoFkdAjmLxd6cAinV9lChoBmgJaA9DCIBKlSh7hV3AlIaUUpRoFU1sA2gWR0COY+Vk+X7cdX2UKGgGaAloD0MIeQQ3UrbAUcCUhpRSlGgVS71oFkdAjmZsC9ytFXV9lChoBmgJaA9DCHzWNVoOPCjAlIaUUpRoFUvsaBZHQI51CqIacZt1fZQoaAZoCWgPQwgxQ+OJIBJWQJSGlFKUaBVN6ANoFkdAjnUwk5ZKWnVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 44,
79
+ "n_steps": 3000,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
PPO_LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6953ad89705c259ef32b35ac5ac76e401f2174e44b858ab0a6d3c75e15562186
3
+ size 84829
PPO_LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6771df4b589325e1a030e15afe829e9235db5bc31c88b7d6c16966eb312025da
3
+ size 43201
PPO_LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
PPO_LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -160.12 +/- 44.18
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efb146cb320>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efb146cb3b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efb146cb440>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efb146cb4d0>", "_build": "<function ActorCriticPolicy._build at 0x7efb146cb560>", "forward": "<function ActorCriticPolicy.forward at 0x7efb146cb5f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efb146cb680>", "_predict": "<function ActorCriticPolicy._predict at 0x7efb146cb710>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efb146cb7a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efb146cb830>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efb146cb8c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7efb14770180>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 528000, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651951428.6976721, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOQ/PL9cRlU9EH5eu1XTiDvCgr8+Z96QvAAAgD8AAIA/g92BviPhJD+jONK8+waWvpOp+D1Oq3a9AAAAAAAAAACtHBI/e0KLvDBkMjx8KaE8OzZNvKt46TsAAIA/AACAPy0c1j70XUi9HvGXPH+5uTrV2CA+vhDNPAAAgD8AAIA/95AFv/um6Lz2jye+I1JmvvlLqDxHQJA/AACAPwAAgD/N7Dy7oFawP768Br1WrIW+pG59vGb/uL0AAAAAAAAAACb7Ij7KHCc/+FNlPWu2sb5NDRQ+vwADPQAAAAAAAAAAMIQrP6tZar7qDo09sa2QvFGdtj2e70g9AAAAAAAAAACA6hO/SyWwPlX4kL7KFcW+70DLvV/Ft70AAAAAAAAAAM1ggDyAaro/bV+ePsqQsz7z5xa880pPvAAAAAAAAAAAQJW1PUgpi7ogA+g7AFMRPBdr1juiI/e8AACAPwAAgD8z34S718Ngua4he7sJlJu8o8PYO+Yyvz0AAAAAAAAAAD3PaL6EI70+C5smvmfayL6TyQU+KLoUPgAAAAAAAAAATT+lPcNpfbpESrK7L0jhPCtEZrv6vL89AACAPwAAgD8UkRq/rBeePOHDzLoJnF04iKu1vfZ+2LkAAIA/AACAP92gJz/vfys/q6VOPv/wcL7GCF68JBOiPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.05600000000000005, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVYRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUz4EVaN5WcCUhpRSlIwBbJRL2owBdJRHQIxBRx3mmtR1fZQoaAZoCWgPQwg1mfG20hs2QJSGlFKUaBVLsGgWR0CMRe42jwhGdX2UKGgGaAloD0MId5/jo8VpQsCUhpRSlGgVTSMBaBZHQIxIvqs2ehB1fZQoaAZoCWgPQwhI3GPpQzBXQJSGlFKUaBVN6ANoFkdAjFY2P91loXV9lChoBmgJaA9DCKNbr+lB4R5AlIaUUpRoFU3oA2gWR0CMYTjU/fO2dX2UKGgGaAloD0MIzhYQWg/DScCUhpRSlGgVS/poFkdAjGXlqagElnV9lChoBmgJaA9DCLaF56Vih0JAlIaUUpRoFU3oA2gWR0CMaPrrxAjZdX2UKGgGaAloD0MISKgZUkUhQ8CUhpRSlGgVS8ZoFkdAjIHB73PAwnV9lChoBmgJaA9DCLMHWoEh8ypAlIaUUpRoFU3oA2gWR0CMhIn4wh4ddX2UKGgGaAloD0MIhbacS/EAYMCUhpRSlGgVTYQBaBZHQIyGD7hvR7Z1fZQoaAZoCWgPQwjcvHFSmD9GQJSGlFKUaBVN6ANoFkdAjIc2Ur08NnV9lChoBmgJaA9DCGq+Sj52Y05AlIaUUpRoFU3oA2gWR0CM88BhhH9WdX2UKGgGaAloD0MI/yPTodN9T8CUhpRSlGgVTegDaBZHQIz1uf7Jnxt1fZQoaAZoCWgPQwgAV7JjI3hNQJSGlFKUaBVN6ANoFkdAjPtXaJyhjHV9lChoBmgJaA9DCGJM+nspBD/AlIaUUpRoFUu5aBZHQI0Pdf7aZhN1fZQoaAZoCWgPQwjzk2qfjk8gwJSGlFKUaBVNCQFoFkdAjRlUOd5IH3V9lChoBmgJaA9DCIiDhChfgCfAlIaUUpRoFUvXaBZHQI0b7klu3tt1fZQoaAZoCWgPQwjiXMMMjRhXQJSGlFKUaBVN6ANoFkdAjSMzDXOGCnV9lChoBmgJaA9DCC7nUlxVKEpAlIaUUpRoFU3oA2gWR0CNJ3n27FsIdX2UKGgGaAloD0MIcm2oGOeUUECUhpRSlGgVTegDaBZHQI0ojkELYwt1fZQoaAZoCWgPQwjRd7eyRFVbQJSGlFKUaBVN6ANoFkdAjSoifHxSYXV9lChoBmgJaA9DCLDkKha/+05AlIaUUpRoFU3oA2gWR0CNL+fGuLaVdX2UKGgGaAloD0MIcAnAP6UgQMCUhpRSlGgVS/xoFkdAjTV2U8mrsHV9lChoBmgJaA9DCPooIy4AF1RAlIaUUpRoFU3oA2gWR0CNRkSvC/GmdX2UKGgGaAloD0MItykeF9WKQsCUhpRSlGgVS7NoFkdAjUcCmEXcg3V9lChoBmgJaA9DCHr+tFGdyVdAlIaUUpRoFU3oA2gWR0CNVwenyd4FdX2UKGgGaAloD0MIFD/G3DWgZMCUhpRSlGgVTX4BaBZHQI1XxjawljV1fZQoaAZoCWgPQwjlCYSdYqFFQJSGlFKUaBVLxGgWR0CNY5V5rxiHdX2UKGgGaAloD0MIzmxX6IPUWkCUhpRSlGgVTegDaBZHQI1mrbJwKjV1fZQoaAZoCWgPQwgZqfdUThM7QJSGlFKUaBVN6ANoFkdAjWmEIgNgB3V9lChoBmgJaA9DCBgjEoWWda+/lIaUUpRoFU1qAWgWR0CNfawHqu8sdX2UKGgGaAloD0MIMLsnD4s3YsCUhpRSlGgVTfoBaBZHQI1/t9nbqQl1fZQoaAZoCWgPQwjcDg2LUZRRQJSGlFKUaBVN6ANoFkdAjYBf6GgzxnV9lChoBmgJaA9DCO5brROXc1ZAlIaUUpRoFU3oA2gWR0CNgnGus90SdX2UKGgGaAloD0MIM/0S8db5JUCUhpRSlGgVTegDaBZHQI2Dqz7di2F1fZQoaAZoCWgPQwi+Mm/VdRAxwJSGlFKUaBVNLAFoFkdAjYTzINmUW3V9lChoBmgJaA9DCLmpgeZz5ldAlIaUUpRoFU3oA2gWR0CNhanrpqyodX2UKGgGaAloD0MIEvWCT3M6U8CUhpRSlGgVTUcBaBZHQI2HU7+1jRV1fZQoaAZoCWgPQwjOxHQhVkVkwJSGlFKUaBVNYAFoFkdAjZfP38GcF3V9lChoBmgJaA9DCFfQtMTKECTAlIaUUpRoFUvUaBZHQI2YknCwbER1fZQoaAZoCWgPQwjg2LPnMnU7QJSGlFKUaBVL+mgWR0CNm+NHYpUhdX2UKGgGaAloD0MIWipvRzh9LECUhpRSlGgVS/RoFkdAjZ83eFcps3V9lChoBmgJaA9DCKkUOxqHuiDAlIaUUpRoFU0DAWgWR0CNnzw71ZkkdX2UKGgGaAloD0MIoPoHkQynT0CUhpRSlGgVTegDaBZHQI2j8Z5zHS51fZQoaAZoCWgPQwhgWz/9Z1JhQJSGlFKUaBVN6ANoFkdAjaW+I2wV03V9lChoBmgJaA9DCEfJq3MMgkTAlIaUUpRoFU0gAWgWR0CNpeClJpWWdX2UKGgGaAloD0MItafknNiMVMCUhpRSlGgVTUIBaBZHQI2rdTWGyop1fZQoaAZoCWgPQwh81cqEXzJIQJSGlFKUaBVN6ANoFkdAja1MRHww03V9lChoBmgJaA9DCDm3CffK9FFAlIaUUpRoFU3oA2gWR0CNrfn3cpLFdX2UKGgGaAloD0MI3QcgtYlfVUCUhpRSlGgVTegDaBZHQI2vNJ8OTaF1fZQoaAZoCWgPQwhtHofB/HFcwJSGlFKUaBVNVgFoFkdAja9jFyaNM3V9lChoBmgJaA9DCIs08Q7wRkrAlIaUUpRoFUv9aBZHQI2z9S0jTrp1fZQoaAZoCWgPQwitodReRDsmwJSGlFKUaBVLsWgWR0CNtu8PnSv1dX2UKGgGaAloD0MIwoU8ghueUcCUhpRSlGgVS/toFkdAjbj75Ec81XV9lChoBmgJaA9DCBnnb0Ihgu4/lIaUUpRoFU0XAWgWR0CNu6yHmA9WdX2UKGgGaAloD0MIpWjlXmCuPMCUhpRSlGgVTQIBaBZHQI2+rBdld1N1fZQoaAZoCWgPQwjGTngJTn9HQJSGlFKUaBVLxWgWR0CNv8H6dlNDdX2UKGgGaAloD0MIVaNXA5T+KECUhpRSlGgVTWcBaBZHQI3A7D0lJH11fZQoaAZoCWgPQwhjmuleJ4ZRwJSGlFKUaBVNIwFoFkdAjccZa/yoXXV9lChoBmgJaA9DCOJ2aFiM0kHAlIaUUpRoFU03AWgWR0CNyzywOe8PdX2UKGgGaAloD0MIfqzgtyGWHUCUhpRSlGgVS65oFkdAjc3b3XZoPHV9lChoBmgJaA9DCIWzW8tkCFTAlIaUUpRoFU0xAWgWR0CN021YQrc1dX2UKGgGaAloD0MIQnbexmbBV0CUhpRSlGgVTegDaBZHQI3Z0kOZssR1fZQoaAZoCWgPQwggCmZMwUpMwJSGlFKUaBVNSAFoFkdAjdpSUcGTtHV9lChoBmgJaA9DCChjfJi93DHAlIaUUpRoFUvhaBZHQI3ac0cfeUJ1fZQoaAZoCWgPQwjF5XgFooNWQJSGlFKUaBVN6ANoFkdAjdwLt3OfNHV9lChoBmgJaA9DCJFfP8SGRmbAlIaUUpRoFU0fAWgWR0CN369PDYRNdX2UKGgGaAloD0MInn3lQXoCTcCUhpRSlGgVTUsBaBZHQI3tcxqO9391fZQoaAZoCWgPQwj4G+244QcSwJSGlFKUaBVL8WgWR0CN76wM6RyPdX2UKGgGaAloD0MIGXPXEvIVRsCUhpRSlGgVS71oFkdAjfJHjABT43V9lChoBmgJaA9DCKD5nLtd8zHAlIaUUpRoFUvUaBZHQI3zdjVhCt11fZQoaAZoCWgPQwh79fHQd0VYQJSGlFKUaBVN6ANoFkdAjfQijk+5fHV9lChoBmgJaA9DCHMSSl8I6TnAlIaUUpRoFUvcaBZHQI30ZDPWxyJ1fZQoaAZoCWgPQwjueJPfomFcQJSGlFKUaBVN6ANoFkdAjgxTTF2mpHV9lChoBmgJaA9DCGLYYUz6CUdAlIaUUpRoFUvNaBZHQI4Q7vRZ2ZB1fZQoaAZoCWgPQwi8IY0KnOQuQJSGlFKUaBVL92gWR0COFVag2606dX2UKGgGaAloD0MIXK/pQUHKUsCUhpRSlGgVS/poFkdAjhhVU2kzoHV9lChoBmgJaA9DCDscXaW7qzxAlIaUUpRoFU3oA2gWR0COGeL9deIEdX2UKGgGaAloD0MI3PP8aaM/WsCUhpRSlGgVTXkBaBZHQI4iejKxLTR1fZQoaAZoCWgPQwgzUBn/PjhcQJSGlFKUaBVN6ANoFkdAjieAd4mkWXV9lChoBmgJaA9DCBk3NdB8Lh5AlIaUUpRoFU3oA2gWR0COJ86IWP92dX2UKGgGaAloD0MIaxFRTN54PsCUhpRSlGgVS7ZoFkdAjiqkFnqVyHV9lChoBmgJaA9DCGtKsg5HpU5AlIaUUpRoFU3oA2gWR0CONo9q1w5vdX2UKGgGaAloD0MIe90iMNYvSMCUhpRSlGgVTSsBaBZHQI49zQb+98J1fZQoaAZoCWgPQwiXAWcpWeJCQJSGlFKUaBVN6ANoFkdAjj5UbDMvAXV9lChoBmgJaA9DCHszar5Kxi/AlIaUUpRoFUv+aBZHQI5EA/LTx5N1fZQoaAZoCWgPQwg+XHLcKT1BwJSGlFKUaBVL3mgWR0COR5E4vN/wdX2UKGgGaAloD0MIIjSCjeufAECUhpRSlGgVS/ZoFkdAjkezfJmuknV9lChoBmgJaA9DCJmEC3kEc0tAlIaUUpRoFU3oA2gWR0COTV5RCQcQdX2UKGgGaAloD0MIDJOpglFJ0T+UhpRSlGgVTegDaBZHQI5QMal1r7B1fZQoaAZoCWgPQwicqKW5Ff1gwJSGlFKUaBVNoQFoFkdAjlBTp5eJHnV9lChoBmgJaA9DCMMRpFLsCArAlIaUUpRoFU0aAWgWR0COWb+jM3ZPdX2UKGgGaAloD0MIt39lpUnFNUCUhpRSlGgVTegDaBZHQI5cTC79Q411fZQoaAZoCWgPQwis4LchxlspwJSGlFKUaBVLyWgWR0COYDDFZPl/dX2UKGgGaAloD0MIr5P6srTXMMCUhpRSlGgVTRgBaBZHQI5gSlYU34t1fZQoaAZoCWgPQwj68CxBRl5JQJSGlFKUaBVN6ANoFkdAjmLxd6cAinV9lChoBmgJaA9DCIBKlSh7hV3AlIaUUpRoFU1sA2gWR0COY+Vk+X7cdX2UKGgGaAloD0MIeQQ3UrbAUcCUhpRSlGgVS71oFkdAjmZsC9ytFXV9lChoBmgJaA9DCHzWNVoOPCjAlIaUUpRoFUvsaBZHQI51CqIacZt1fZQoaAZoCWgPQwgxQ+OJIBJWQJSGlFKUaBVN6ANoFkdAjnUwk5ZKWnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 44, "n_steps": 3000, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18f1cf0da9255e21ace30c0fc419d73b28fd445e2489570ceb5d991de18a69d3
3
+ size 259762
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -160.11789308850422, "std_reward": 44.18011828028374, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T19:32:49.068048"}