test_llama_3 / processing_mllama.py
AlexHung29629's picture
Upload 13 files
4335708 verified
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Processor class for Mllama."""
from typing import List, Optional, Union
import numpy as np
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers.processing_utils import ImagesKwargs, ProcessingKwargs, ProcessorMixin, Unpack, AudioKwargs
from transformers.tokenization_utils_base import (
PreTokenizedInput,
TextInput,
AudioInput,
)
# TODO: Can we do it that way or its better include as "Copied from ..."
from transformers.models.mllama.image_processing_mllama import make_list_of_images
from .audio_processing_mllama import make_list_of_audio_clips, build_audio_tokens, pack_audio_clips
class MllamaImagesKwargs(ImagesKwargs, total=False):
max_image_tiles: Optional[int]
class MllamaProcessorKwargs(ProcessingKwargs, total=False):
images_kwargs: MllamaImagesKwargs
_defaults = {
"image_kwargs": {
"max_image_tiles": 4,
},
}
def get_cross_attention_token_mask(input_ids: List[int], image_token_id: int) -> List[List[int]]:
"""
Generate a cross-attention token mask for image tokens in the input sequence.
This function identifies the positions of image tokens in the input sequence and creates
a mask that defines which subsequent tokens each image token should attend to.
Args:
input_ids (List[int]): A list of token ids representing the input sequence.
image_token_id (int): The id of the token used to represent images in the sequence.
Returns:
List[List[int]]: A list of [start, end] pairs, where each pair represents the range
of tokens an image token should attend to.
Notes:
- If no image tokens are present, an empty list is returned.
- For a single image token, it attends to all subsequent tokens until the end of the sequence.
- For multiple image tokens, each attends to tokens up to the next image token or the end of the sequence.
- Consecutive image tokens are treated as a group and attend to all subsequent tokens together.
"""
image_token_locations = [i for i, token in enumerate(input_ids) if token == image_token_id]
if len(image_token_locations) == 0:
return []
# only one image present, unmask until end of sequence
if len(image_token_locations) == 1:
return [[image_token_locations[0], -1]]
vision_masks = [[loc1, loc2] for loc1, loc2 in zip(image_token_locations[:-1], image_token_locations[1:])]
# last image will attend to all subsequent text
vision_masks.append([image_token_locations[-1], len(input_ids)])
# if there are two or more consecutive vision tokens,
# they should all attend to all subsequent
# text present
last_mask_end = vision_masks[-1][1]
for vision_mask in vision_masks[::-1]:
if vision_mask[0] == vision_mask[1] - 1:
vision_mask[1] = last_mask_end
last_mask_end = vision_mask[1]
return vision_masks
def convert_sparse_cross_attention_mask_to_dense(
cross_attention_token_mask: List[List[List[int]]],
num_tiles: List[List[int]],
max_num_tiles: int,
length: int,
) -> np.ndarray:
"""
Convert the cross attention mask indices to a cross attention mask 4D array.
This function takes a sparse representation of cross attention masks and converts it to a dense 4D numpy array.
The sparse representation is a nested list structure that defines attention ranges for each image in each batch item.
Args:
cross_attention_token_mask (List[List[List[int]]]): A nested list structure where:
- The outer list represents the batch dimension.
- The middle list represents different images within each batch item.
- The inner list contains pairs of integers [start, end] representing token ranges for each image.
num_tiles (List[List[int]]): A nested list structure specifying the number of tiles for each image in each batch item.
max_num_tiles (int): The maximum possible number of tiles.
length (int): The total sequence length of the input.
Returns:
np.ndarray: A 4D numpy array of shape (batch_size, length, max_num_images, max_num_tiles)
The array contains `1` where attention is allowed and `0` where it is not.
Note:
- Special handling is done for cases where the end token is -1, which is interpreted as attending to the end of the sequence.
"""
batch_size = len(cross_attention_token_mask)
max_num_images = max([len(masks) for masks in cross_attention_token_mask])
cross_attention_mask = np.zeros(
shape=(batch_size, length, max_num_images, max_num_tiles),
dtype=np.int64,
)
for sample_idx, (sample_masks, sample_num_tiles) in enumerate(zip(cross_attention_token_mask, num_tiles)):
for mask_idx, (locations, mask_num_tiles) in enumerate(zip(sample_masks, sample_num_tiles)):
if len(locations) == 2:
start, end = locations
end = min(end, length)
if end == -1:
end = length
cross_attention_mask[sample_idx, start:end, mask_idx, :mask_num_tiles] = 1
return cross_attention_mask
def build_string_from_input(prompt: str, bos_token: str, image_token: str) -> str:
"""
Builds a string from the input prompt by adding `bos_token` if not already present.
Args:
prompt (`str`):
The input prompt string.
bos_token (`str`):
The beginning of sentence token to be added.
image_token (`str`):
The image token used to identify the start of an image sequence.
Returns:
str: The modified prompt string with the `bos_token` added if necessary.
Examples:
>>> build_string_from_input("Hello world", "<begin_of_text>", "<|image|>")
'<begin_of_text>Hello world'
>>> build_string_from_input("<|image|>Hello world", "<begin_of_text>", "<|image|>")
'<|image|><begin_of_text>Hello world'
>>> build_string_from_input("<begin_of_text>Hello world", "<begin_of_text>", "<|image|>")
'<begin_of_text>Hello world'
"""
if bos_token in prompt:
return prompt
num_image_tokens_on_start = 0
while prompt.startswith(image_token):
prompt = prompt[len(image_token) :]
num_image_tokens_on_start += 1
return f"{image_token * num_image_tokens_on_start}{bos_token}{prompt}"
class MllamaProcessor(ProcessorMixin):
r"""
Constructs a Mllama processor which wraps [`MllamaImageProcessor`] and
[`PretrainedTokenizerFast`] into a single processor that inherits both the image processor and
tokenizer functionalities. See the [`~MllamaProcessor.__call__`] and [`~OwlViTProcessor.decode`] for more
information.
The preferred way of passing kwargs is as a dictionary per modality, see usage example below.
```python
from transformers import MllamaProcessor
from PIL import Image
processor = MllamaProcessor.from_pretrained("meta-llama/Llama-3.2-11B-Vision")
processor(
images=your_pil_image,
text=["<|image|>If I had to write a haiku for this one"],
images_kwargs = {"size": {"height": 448, "width": 448}},
text_kwargs = {"padding": "right"},
common_kwargs = {"return_tensors": "pt"},
)
```
Args:
image_processor ([`MllamaImageProcessor`]):
The image processor is a required input.
tokenizer ([`PreTrainedTokenizer`, `PreTrainedTokenizerFast`]):
The tokenizer is a required input.
"""
attributes = ["image_processor", "audio_processor", "tokenizer"]
image_processor_class = "MllamaImageProcessor"
audio_processor_class = "MllamaAudioFeatureExtractor"
tokenizer_class = "PreTrainedTokenizerFast"
def __init__(self, image_processor, audio_processor, tokenizer):
self.image_token = "<|image|>"
self.image_token_id = tokenizer.convert_tokens_to_ids(self.image_token)
self.audio_token = "<|audio|>"
self.audio_token_id = tokenizer.convert_tokens_to_ids(self.audio_token)
self.python_token = "<|python_tag|>"
self.python_token_id = tokenizer.convert_tokens_to_ids(self.python_token)
self.bos_token = tokenizer.bos_token
self.chat_template = tokenizer.chat_template
super().__init__(image_processor, audio_processor, tokenizer)
def __call__(
self,
images: Optional[ImageInput] = None,
text: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
audio: Optional[AudioInput] = None,
videos=None,
**kwargs: Unpack[MllamaProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare text(s) and image(s) to be fed as input to the model. This method forwards the `text`
arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` arguments to
MllamaImageProcessor's [`~MllamaImageProcessor.__call__`] if `images` is not `None`. Please refer
to the docstring of the above two methods for more information.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
- **audio_features** -- Audio features extracted using SeamlessM4TFeatureExtractor. Returned when `audio` is not `None`.
TODO: add aspect_ratio_ids and aspect_ratio_mask and cross_attention_mask
"""
if text is None:
raise ValueError("You must specify text.")
output_kwargs = self._merge_kwargs(
MllamaProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
text_kwargs = output_kwargs["text_kwargs"]
images_kwargs = output_kwargs["images_kwargs"]
common_kwargs = output_kwargs["common_kwargs"]
data = {}
if audio is not None:
audio_batch = make_list_of_audio_clips(audio)
audio_features = self.audio_processor(audio_batch)
data.update(audio_features)
if isinstance(text, str):
text = [text]
elif not (isinstance(text, (list, tuple)) and all(isinstance(t, str) for t in text)):
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
n_images_in_text = [t.count(self.image_token) for t in text]
text = [build_string_from_input(text_item, self.bos_token, self.image_token) for text_item in text]
_ = text_kwargs.pop("padding_side", None) # hack until padding-side is an accepted kwarg by tokenizers
encoding = self.tokenizer(text, **text_kwargs)
if audio is not None:
encoding = build_audio_tokens(encoding, audio_features, self.audio_token_id)
data.update(encoding)
n_images_in_images = [0]
if images is not None:
images = make_list_of_images(images)
n_images_in_images = [len(sample) for sample in images]
if text is not None:
if any(batch_img == 0 for batch_img in n_images_in_text) and not all(
batch_img == 0 for batch_img in n_images_in_text
):
raise ValueError(
"If a batch of text is provided, there should be either no images or at least one image per sample"
)
if sum(n_images_in_images) != sum(n_images_in_text):
if images is None:
raise ValueError("No image were provided, but there are image tokens in the prompt")
else:
raise ValueError(
f"The number of image token ({sum(n_images_in_text)}) should be the same as in the number of provided images ({sum(n_images_in_images)})"
)
if images is not None:
image_features = self.image_processor(images, **images_kwargs)
num_tiles = image_features.pop("num_tiles")
data.update(image_features)
# Create cross attention mask
if images is not None and text is not None:
cross_attention_token_mask = [
get_cross_attention_token_mask(token_ids, self.image_token_id) for token_ids in encoding["input_ids"]
]
cross_attention_mask = convert_sparse_cross_attention_mask_to_dense(
cross_attention_token_mask,
num_tiles=num_tiles,
max_num_tiles=self.image_processor.max_image_tiles,
length=max(len(input_ids) for input_ids in encoding["input_ids"]),
)
data["cross_attention_mask"] = cross_attention_mask
return_tensors = common_kwargs.pop("return_tensors", None)
batch_feature = BatchFeature(data=data, tensor_type=return_tensors)
return batch_feature
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
audio_processor_input_names = self.audio_processor.model_input_names
return list(tokenizer_input_names +
image_processor_input_names +
["cross_attention_mask"] +
audio_processor_input_names)