File size: 2,340 Bytes
69a552b
da07249
 
 
69a552b
e86f873
da07249
 
69a552b
da07249
69a552b
da07249
 
66a79e5
4de86d4
da07249
69a552b
cc4b1f1
 
da07249
 
 
 
69a552b
da07249
69a552b
 
 
699ea16
 
843f9c7
da07249
 
 
 
e8cfffd
69a552b
 
 
da07249
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from typing import Optional, Tuple, Union
import torch
from torch import nn
from transformers.modeling_outputs import BaseModelOutput
from transformers import Wav2Vec2BertModel, Wav2Vec2BertConfig, Wav2Vec2BertPreTrainedModel
from transformers.models.mllama.configuration_mllama import MllamaTextConfig


class Llama3Embedding(Wav2Vec2BertPreTrainedModel):
    base_model_prefix = "audio_model"
    def __init__(self, config: Wav2Vec2BertConfig, text_config: MllamaTextConfig):
        super().__init__(config)
        assert config.add_adapter is True, f'{type(self).__name__} requires add adapter to be true.'
        assert config.output_hidden_size == text_config.hidden_size
        self.text_embeddings = nn.Embedding(text_config.vocab_size, text_config.hidden_size, text_config.pad_token_id)
        self.audio_embedding = Wav2Vec2BertModel(config)
        assert self.text_embeddings.weight.shape[-1] == text_config.hidden_size
        self.start_of_audio = nn.Parameter(data=torch.zeros((1, config.output_hidden_size)), requires_grad=True)
        self.end_of_audio = nn.Parameter(data=torch.zeros((1, config.output_hidden_size)), requires_grad=True)

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        audio_features: Optional[torch.Tensor] = None,
    ) -> Union[BaseModelOutput, Tuple[torch.Tensor, ...]]:
        input_embeddings = self.text_embeddings(torch.clamp(input_ids, min=0))
        if audio_features is None:
            return input_embeddings
        bs, max_num_img, l, d = audio_features.shape
        audio_embeddings = self.audio_embedding(input_features=audio_features.view((bs*max_num_img, l, d)))['last_hidden_state']
        audio_embeddings = audio_embeddings.view((bs, max_num_img, -1, self.start_of_audio.shape[-1]))        

        for i in range(bs):
            for j in range(max_num_img):
                audio_id = -1 - j
                if torch.any(input_ids[i] == audio_id):
                    positions = torch.nonzero(input_ids[i] == audio_id, as_tuple=True)
                    seq_len = input_embeddings[i][positions].shape[0] - 2
                    input_embeddings[i] = input_embeddings[i].index_put(positions, torch.concat([self.start_of_audio, audio_embeddings[i, j, :seq_len, :], self.end_of_audio]), accumulate=False)
        return input_embeddings