test_mllama_11B_v3 / audio_processing_mllama.py
AlexHung29629's picture
Update audio_processing_mllama.py
834194e verified
raw
history blame
3.02 kB
import math
from typing import Dict, List, Optional, Union
import numpy as np
import transformers
from transformers.tokenization_utils_base import AudioInput
from transformers.models.seamless_m4t.feature_extraction_seamless_m4t import SeamlessM4TFeatureExtractor
from transformers.utils import TensorType
from transformers.feature_extraction_utils import BatchFeature
from transformers import AutoFeatureExtractor
def build_audio_tokens(text: List[str], audio_features: Union[Dict, List[List[np.ndarray]]], audio_token="<|audio|>") -> Dict:
if not isinstance(audio_features, list):
audio_features = audio_features['audio_features']
bs = audio_features.shape[0]
for i in range(bs):
for j in range(len(audio_features[i])):
tgt_token = f"<|audio_{j+1}|>" * get_num_embeddings(audio_features[i][j].shape[0])
text[i] = text[i].replace(audio_token, tgt_token, 1)
return text
def get_num_embeddings(num_framses, adapter_kernel_size=7, adapter_stride=4) -> int:
pad = adapter_stride // 2
seq_lens = ((num_framses + 2 * pad - adapter_kernel_size) / adapter_stride) + 1
return math.floor(seq_lens) + 2 # 2 = <|begin_of_audio|>, <|end_of_audio|>
class MllamaAudioFeatureExtractor(SeamlessM4TFeatureExtractor):
def __call__(
self,
batch_audio_clips: List[List[AudioInput]],
return_tensors: Optional[Union[str, TensorType]] = None,
) -> BatchFeature:
audio_features = [[ super(MllamaAudioFeatureExtractor, self).__call__(audio_j, sampling_rate=16000, return_attention_mask=False)['input_features'][0] for audio_j in audio_i ] for audio_i in batch_audio_clips ]
packed_audio_features = self.pack_audio_clips(audio_features)
encoded_audio_inputs = BatchFeature(
data={
"audio_features": packed_audio_features,
},
tensor_type=return_tensors,
)
return encoded_audio_inputs
def pack_audio_clips(self, batch_audio_clips: List[List[np.ndarray]]) -> np.ndarray:
assert batch_audio_clips[0][0].ndim == 2 # sequence length x feature dimension
# Determine output shape: (batch_size, max_num_clips, max_frames, feature_dim)
batch_size = len(batch_audio_clips)
max_num_clips = max([len(clips) for clips in batch_audio_clips])
max_frames = max([clip.shape[0] for clips in batch_audio_clips for clip in clips])
feature_dim = batch_audio_clips[0][0].shape[1]
stacked_audio_clips = np.zeros((batch_size, max_num_clips, max_frames, feature_dim), dtype=np.float32)
for i, clips in enumerate(batch_audio_clips):
for j, clip in enumerate(clips):
stacked_audio_clips[i, j, :clip.shape[0], :] = clip
return stacked_audio_clips
AutoFeatureExtractor.register("MllamaAudioFeatureExtractor", MllamaAudioFeatureExtractor)
transformers.MllamaAudioFeatureExtractor = MllamaAudioFeatureExtractor