from typing import Optional, Tuple, Union import torch from torch import nn from transformers.modeling_outputs import BaseModelOutput from transformers import Wav2Vec2BertModel, Wav2Vec2BertConfig, MllamaPreTrainedModel from transformers.models.wav2vec2_bert.modeling_wav2vec2_bert import Wav2Vec2BertAdapterLayer from .configuration_llama3 import Llama3Config class AudioAdapter(nn.Module): def __init__(self, config: Wav2Vec2BertConfig): super().__init__() # feature dim might need to be down-projected if config.output_hidden_size != config.hidden_size: self.proj = nn.Linear(config.hidden_size, config.output_hidden_size) else: self.proj = None self.layers = nn.ModuleList(Wav2Vec2BertAdapterLayer(config) for _ in range(config.num_adapter_layers)) self.layerdrop = config.layerdrop self.kernel_size = config.adapter_kernel_size self.stride = config.adapter_stride def _compute_sub_sample_lengths_from_attention_mask(self, seq_lens): if seq_lens is None: return seq_lens pad = self.stride // 2 seq_lens = ((seq_lens + 2 * pad - self.kernel_size) / self.stride) + 1 return seq_lens.floor() def forward(self, hidden_states, attention_mask=None): # down project hidden_states if necessary if self.proj is not None: hidden_states = self.proj(hidden_states) sub_sampled_lengths = None if attention_mask is not None: sub_sampled_lengths = (attention_mask.size(1) - (1 - attention_mask.int()).sum(1)).to(hidden_states.device) for layer in self.layers: layerdrop_prob = torch.rand([]) sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(sub_sampled_lengths) if not self.training or (layerdrop_prob > self.layerdrop): hidden_states = layer( hidden_states, attention_mask=attention_mask, sub_sampled_lengths=sub_sampled_lengths ) return hidden_states class Llama3Embedding(MllamaPreTrainedModel): config_class = Llama3Config base_model_prefix = "audio_model" def __init__(self, config: Llama3Config): super().__init__(config) assert config.audio_config.output_hidden_size == config.text_config.hidden_size self.text_embeddings = nn.Embedding(config.text_config.vocab_size, config.text_config.hidden_size, config.text_config.pad_token_id) config.audio_config.add_adapter = False self.audio_encoder = Wav2Vec2BertModel(config.audio_config) self.audio_adapter = AudioAdapter(config.audio_config) self.start_of_audio = nn.Parameter(data=torch.zeros((1, config.audio_config.output_hidden_size)), requires_grad=True) self.end_of_audio = nn.Parameter(data=torch.zeros((1, config.audio_config.output_hidden_size)), requires_grad=True) self.text_config = config.text_config def forward( self, input_ids: torch.LongTensor = None, audio_features: Optional[torch.Tensor] = None, ) -> Union[BaseModelOutput, Tuple[torch.Tensor, ...]]: input_embeddings = self.text_embeddings(torch.clamp(input_ids, min=0)) if audio_features is None: return input_embeddings bs, max_num_img, l, d = audio_features.shape audio_embeddings = self.audio_encoder(input_features=audio_features.view((bs*max_num_img, l, d)))['last_hidden_state'] audio_embeddings = self.audio_adapter(audio_embeddings) audio_embeddings = audio_embeddings.view((bs, max_num_img, -1, self.start_of_audio.shape[-1])) for i in range(bs): for j in range(max_num_img): audio_id = -1 - j if torch.any(input_ids[i] == audio_id): positions = torch.nonzero(input_ids[i] == audio_id, as_tuple=True) seq_len = input_embeddings[i][positions].shape[0] - 2 input_embeddings[i] = input_embeddings[i].index_put(positions, torch.concat([self.start_of_audio, audio_embeddings[i, j, :, :], self.end_of_audio]), accumulate=False) return input_embeddings