AlexKoff88
commited on
Commit
·
9795db4
1
Parent(s):
449853b
Update README
Browse files
README.md
CHANGED
@@ -1,3 +1,41 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
# Quantized BERT-base model with 90% of ustructured sparsity
|
5 |
+
The pruned and quantized model in the OpenVINO IR. The pruned model was taken from this source and quantized with the code below using HF Optimum for OpenVINO:
|
6 |
+
|
7 |
+
```python
|
8 |
+
from functools import partial
|
9 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
10 |
+
from optimum.intel.openvino import OVConfig, OVQuantizer
|
11 |
+
|
12 |
+
model_id = "neuralmagic/oBERT-12-downstream-pruned-unstructured-90-mnli" #"typeform/distilbert-base-uncased-mnli"
|
13 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_id)
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
15 |
+
save_dir = "./nm_mnli_90"
|
16 |
+
|
17 |
+
def preprocess_function(examples, tokenizer):
|
18 |
+
return tokenizer(examples["premise"], examples["hypothesis"], padding="max_length", max_length=128, truncation=True)
|
19 |
+
|
20 |
+
# Load the default quantization configuration detailing the quantization we wish to apply
|
21 |
+
quantization_config = OVConfig()
|
22 |
+
# Instantiate our OVQuantizer using the desired configuration
|
23 |
+
quantizer = OVQuantizer.from_pretrained(model)
|
24 |
+
# Create the calibration dataset used to perform static quantization
|
25 |
+
|
26 |
+
calibration_dataset = quantizer.get_calibration_dataset(
|
27 |
+
"glue",
|
28 |
+
dataset_config_name="mnli",
|
29 |
+
preprocess_function=partial(preprocess_function, tokenizer=tokenizer),
|
30 |
+
num_samples=100,
|
31 |
+
dataset_split="train",
|
32 |
+
)
|
33 |
+
# Apply static quantization and export the resulting quantized model to OpenVINO IR format
|
34 |
+
quantizer.quantize(
|
35 |
+
quantization_config=quantization_config,
|
36 |
+
calibration_dataset=calibration_dataset,
|
37 |
+
save_directory=save_dir,
|
38 |
+
)
|
39 |
+
# Save the tokenizer
|
40 |
+
tokenizer.save_pretrained(save_dir)
|
41 |
+
```
|