File size: 2,911 Bytes
c57b6a4
 
 
 
 
 
 
 
 
 
 
 
 
10c6f41
 
cd561fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4817c73
 
 
 
 
cd561fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42e3042
cd561fd
 
 
 
 
 
 
 
 
10c6f41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
---
license: apache-2.0
datasets:
- Alfaxad/Inkuba-Mono-Swahili
language:
- sw
pipeline_tag: text-generation
library_name: transformers
tags:
- gemma2
- text-2-text
- text-generation
- llms
base_model:
- google/gemma-2-2b
---






# Gemma2-2B-Swahili-Preview
Gemma2-2B-Swahili-Preview is a Swahili variation of the base language model Gemma2 2B fine-tuned on the Inkuba-Mono Swahili dataset, designed to enhance Swahili language understanding through monolingual training.

## Model Details
- **Developer:** Alfaxad Eyembe
- **Base Model:** google/gemma-2-2b
- **Model Type:** Decoder-only transformer
- **Language:** Swahili
- **License:** Apache 2.0
- **Fine-tuning Approach:** Low-Rank Adaptation (LoRA)

## Training Data
The model was fine-tuned on a focused subset of the Inkuba-Mono dataset:
- 1,000,000 randomly selected examples
- Total tokens: 60,831,073
- Average text length: 101.33 characters
- Diverse Swahili text sources including news, social media, and various domains

## Training Details
- **Fine-tuning Method:** LoRA
- **Training Steps:** 2,500
- **Batch Size:** 2
- **Gradient Accumulation Steps:** 32
- **Learning Rate:** 2e-4
- **Training Time:** ~7.5 hours


![image/png](https://cdn-uploads.huggingface.co/production/uploads/6375af60e3413701a9f01c0f/8fVULkKb92JTk8-65KE5R.png)



## Model Capabilities
This model is designed for:
- Swahili text continuation
- Natural language understanding
- Contextual text generation
- Base language modeling for Swahili

## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

tokenizer = AutoTokenizer.from_pretrained("alfaxadeyembe/gemma2-2b-swahili-preview")
model = AutoModelForCausalLM.from_pretrained(
    "alfaxadeyembe/gemma2-2b-swahili-preview",
    device_map="auto",
    torch_dtype=torch.bfloat16
)

# Set to evaluation mode
model.eval()

# Example usage
prompt = "Katika soko la Kariakoo, teknolojia mpya imewezesha"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(
    **inputs,
    max_new_tokens=500,
    do_sample=True,
    temperature=0.7,
    top_p=0.95
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```

## Key Features
- Natural Swahili text continuation
- Strong cultural context understanding
- Efficient parameter updates through LoRA
- Diverse domain knowledge integration

## Limitations
- Not instruction-tuned
- Base language modeling capabilities
- Performance varies across different text domains

## Citation
```bibtex
@misc{gemma2-2b-swahili-preview,
  author = {Alfaxad Eyembe},
  title = {Gemma2-2B-Swahili-Preview: Swahili Variation of Gemma2 2B},
  year = {2025},
  publisher = {Hugging Face},
  journal = {Hugging Face Model Hub},
}
```

## Contact
For questions or feedback, please reach out through:
- HuggingFace: [@alfaxadeyembe](https://huggingface.co/alfaxad)
- X : [@alfxad](https://twitter.com/alfxad)