matthewkenney commited on
Commit
063831e
1 Parent(s): 8edfe5a

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +110 -0
README.md ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ pipeline_tag: summarization
6
+ widget:
7
+ - text: What is the peak phase of T-eV?
8
+ example_title: Question Answering
9
+ tags:
10
+ - arxiv
11
+ ---
12
+ # Table of Contents
13
+
14
+ 0. [TL;DR](#TL;DR)
15
+ 1. [Model Details](#model-details)
16
+ 2. [Usage](#usage)
17
+ 3. [Uses](#uses)
18
+ 4. [Citation](#citation)
19
+
20
+ # TL;DR
21
+
22
+ This is a Phi-1_5 model trained on [camel-ai/physics](https://huggingface.co/datasets/meta-math/MetaMathQA). This model is for research purposes only and ***should not be used in production settings***.
23
+
24
+
25
+ ## Model Description
26
+
27
+
28
+ - **Model type:** Language model
29
+ - **Language(s) (NLP):** English
30
+ - **License:** Apache 2.0
31
+ - **Related Models:** [Phi-1_5](https://huggingface.co/microsoft/phi-1_5)
32
+
33
+ # Usage
34
+
35
+ Find below some example scripts on how to use the model in `transformers`:
36
+
37
+ ## Using the Pytorch model
38
+
39
+ ```python
40
+
41
+ from huggingface_hub import notebook_login
42
+ from datasets import load_dataset, Dataset
43
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
44
+
45
+ model = "ArtifactAI/phi-metamath"
46
+
47
+ model = AutoModelForCausalLM.from_pretrained(base_model, trust_remote_code= True)
48
+ tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
49
+
50
+ def generate(prompt):
51
+ inputs = tokenizer(f'''Below is an instruction that describes a task. Write a response that appropriately completes the request If you are adding additional white spaces, stop writing".\n\n### Instruction:\n{prompt}.\n\n### Response:\n ''', return_tensors="pt", return_attention_mask=False)
52
+ streamer = TextStreamer(tokenizer, skip_prompt= True)
53
+ _ = model.generate(**inputs, streamer=streamer, max_new_tokens=500)
54
+
55
+ generate("What are the common techniques used in identifying a new species, and how can scientists accurately categorize it within the existing taxonomy system?")
56
+ ```
57
+
58
+ ## Training Data
59
+
60
+ The model was trained on [camel-ai/phi-physics](https://huggingface.co/datasets/meta-math/MetaMathQA), a dataset of question/answer pairs.
61
+
62
+
63
+ ## Training procedure
64
+
65
+
66
+ The following `bitsandbytes` quantization config was used during training:
67
+ - quant_method: bitsandbytes
68
+ - load_in_8bit: False
69
+ - load_in_4bit: True
70
+ - llm_int8_threshold: 6.0
71
+ - llm_int8_skip_modules: None
72
+ - llm_int8_enable_fp32_cpu_offload: False
73
+ - llm_int8_has_fp16_weight: False
74
+ - bnb_4bit_quant_type: nf4
75
+ - bnb_4bit_use_double_quant: True
76
+ - bnb_4bit_compute_dtype: float16
77
+
78
+ ### Framework versions
79
+
80
+
81
+ - PEFT 0.6.2
82
+ ## Training procedure
83
+
84
+
85
+ The following `bitsandbytes` quantization config was used during training:
86
+ - quant_method: bitsandbytes
87
+ - load_in_8bit: False
88
+ - load_in_4bit: True
89
+ - llm_int8_threshold: 6.0
90
+ - llm_int8_skip_modules: None
91
+ - llm_int8_enable_fp32_cpu_offload: False
92
+ - llm_int8_has_fp16_weight: False
93
+ - bnb_4bit_quant_type: nf4
94
+ - bnb_4bit_use_double_quant: True
95
+ - bnb_4bit_compute_dtype: float16
96
+
97
+ ### Framework versions
98
+
99
+
100
+ - PEFT 0.6.2
101
+
102
+ # Citation
103
+
104
+ ```
105
+ @misc{phi-metamath,
106
+ title={phi-metamath},
107
+ author={Matthew Kenney},
108
+ year={2023}
109
+ }
110
+ ```