--- license: apache-2.0 language: - en pipeline_tag: summarization widget: - text: What is the peak phase of T-eV? example_title: Question Answering tags: - arxiv --- # Table of Contents 0. [TL;DR](#TL;DR) 1. [Model Details](#model-details) 2. [Usage](#usage) 3. [Uses](#uses) 4. [Citation](#citation) # TL;DR This is a Phi-1_5 model trained on [camel-ai/physics](https://huggingface.co/datasets/camel-ai/physics). This model is for research purposes only and ***should not be used in production settings***. ## Model Description - **Model type:** Language model - **Language(s) (NLP):** English - **License:** Apache 2.0 - **Related Models:** [Phi-1_5](https://huggingface.co/microsoft/phi-1_5) # Usage Find below some example scripts on how to use the model in `transformers`: ## Using the Pytorch model ```python from huggingface_hub import notebook_login from datasets import load_dataset, Dataset from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer model = "ArtifactAI/phi-physics" model = AutoModelForCausalLM.from_pretrained(base_model, trust_remote_code= True) tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True) def generate(prompt): inputs = tokenizer(f'''Below is an instruction that describes a task. Write a response that appropriately completes the request If you are adding additional white spaces, stop writing".\n\n### Instruction:\n{prompt}.\n\n### Response:\n ''', return_tensors="pt", return_attention_mask=False) streamer = TextStreamer(tokenizer, skip_prompt= True) _ = model.generate(**inputs, streamer=streamer, max_new_tokens=500) generate("What are the common techniques used in identifying a new species, and how can scientists accurately categorize it within the existing taxonomy system?") ``` ## Training Data The model was trained on [camel-ai/phi-physics](https://huggingface.co/datasets/camel-ai/physics), a dataset of question/answer pairs. ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.2 ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.2 # Citation ``` @misc{phi-math, title={phi-biology}, author={Matthew Kenney}, year={2023} } ```