File size: 36,724 Bytes
ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 581c2b2 2720b09 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 581c2b2 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 581c2b2 ca1f7d7 581c2b2 a3fa269 581c2b2 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 ca1f7d7 a3fa269 581c2b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 |
from __future__ import annotations
import argparse
import logging
import math
import queue
from typing import Dict, List, Optional, Union
import numpy as np
import torch
import torch.multiprocessing as mp
from tqdm.autonotebook import trange
from transformers import AutoModel, AutoTokenizer
from mteb import MTEB
TASK_LIST_CLASSIFICATION = [
"AmazonCounterfactualClassification",
"AmazonPolarityClassification",
"AmazonReviewsClassification",
"Banking77Classification",
"EmotionClassification",
"ImdbClassification",
"MassiveIntentClassification",
"MassiveScenarioClassification",
"MTOPDomainClassification",
"MTOPIntentClassification",
"ToxicConversationsClassification",
"TweetSentimentExtractionClassification",
]
TASK_LIST_CLUSTERING = [
"ArxivClusteringP2P",
"ArxivClusteringS2S",
"BiorxivClusteringP2P",
"BiorxivClusteringS2S",
"MedrxivClusteringP2P",
"MedrxivClusteringS2S",
"RedditClustering",
"RedditClusteringP2P",
"StackExchangeClustering",
"StackExchangeClusteringP2P",
"TwentyNewsgroupsClustering",
]
TASK_LIST_PAIR_CLASSIFICATION = [
"SprintDuplicateQuestions",
"TwitterSemEval2015",
"TwitterURLCorpus",
]
TASK_LIST_RERANKING = [
"AskUbuntuDupQuestions",
"MindSmallReranking",
"SciDocsRR",
"StackOverflowDupQuestions",
]
TASK_LIST_RETRIEVAL = [
"ArguAna",
"ClimateFEVER",
"CQADupstackAndroidRetrieval",
"CQADupstackEnglishRetrieval",
"CQADupstackGamingRetrieval",
"CQADupstackGisRetrieval",
"CQADupstackMathematicaRetrieval",
"CQADupstackPhysicsRetrieval",
"CQADupstackProgrammersRetrieval",
"CQADupstackStatsRetrieval",
"CQADupstackTexRetrieval",
"CQADupstackUnixRetrieval",
"CQADupstackWebmastersRetrieval",
"CQADupstackWordpressRetrieval",
"DBPedia",
"FEVER",
"FiQA2018",
"HotpotQA",
"MSMARCO",
"NFCorpus",
"NQ",
"QuoraRetrieval",
"SCIDOCS",
"SciFact",
"Touche2020",
"TRECCOVID",
]
TASK_LIST_STS = [
"BIOSSES",
"SICK-R",
"STS12",
"STS13",
"STS14",
"STS15",
"STS16",
"STS17",
"STS22",
"STSBenchmark",
"SummEval",
]
MTEB_TASK_LIST = (
TASK_LIST_CLASSIFICATION
+ TASK_LIST_CLUSTERING
+ TASK_LIST_PAIR_CLASSIFICATION
+ TASK_LIST_RERANKING
+ TASK_LIST_RETRIEVAL
+ TASK_LIST_STS
)
CMTEB_TASK_LIST = [
"TNews",
"IFlyTek",
"MultilingualSentiment",
"JDReview",
"OnlineShopping",
"Waimai",
"AmazonReviewsClassification",
"MassiveIntentClassification",
"MassiveScenarioClassification",
"MultilingualSentiment",
"CLSClusteringS2S",
"CLSClusteringP2P",
"ThuNewsClusteringS2S",
"ThuNewsClusteringP2P",
"Ocnli",
"Cmnli",
"T2Reranking",
"MmarcoReranking",
"CMedQAv1",
"CMedQAv2",
"T2Retrieval",
"MMarcoRetrieval",
"DuRetrieval",
"CovidRetrieval",
"CmedqaRetrieval",
"EcomRetrieval",
"MedicalRetrieval",
"VideoRetrieval",
"ATEC",
"BQ",
"LCQMC",
"PAWSX",
"STSB",
"AFQMC",
"QBQTC",
"STS22",
]
MTEB_PL = [
"CBD",
"PolEmo2.0-IN",
"PolEmo2.0-OUT",
"AllegroReviews",
"PAC",
"MassiveIntentClassification",
"MassiveScenarioClassification",
"SICK-E-PL",
"PPC",
"CDSC-E",
"PSC",
"8TagsClustering",
"SICK-R-PL",
"CDSC-R",
"STS22",
"ArguAna-PL",
"DBPedia-PL",
"FiQA-PL",
"HotpotQA-PL",
"MSMARCO-PL",
"NFCorpus-PL",
"NQ-PL",
"Quora-PL",
"SCIDOCS-PL",
"SciFact-PL",
"TRECCOVID-PL",
]
MTEB_FR = [
"AmazonReviewsClassification",
"MasakhaNEWSClassification",
"MassiveIntentClassification",
"MassiveScenarioClassification",
"MTOPDomainClassification",
"MTOPIntentClassification",
"OpusparcusPC",
"PawsX",
"AlloProfClusteringP2P",
"AlloProfClusteringS2S",
"HALClusteringS2S",
"MasakhaNEWSClusteringP2P",
"MasakhaNEWSClusteringS2S",
"MLSUMClusteringP2P",
"MLSUMClusteringS2S",
"SyntecReranking",
"AlloprofReranking",
"AlloprofRetrieval",
"BSARDRetrieval",
"SyntecRetrieval",
"XPQARetrieval",
"MintakaRetrieval",
"SummEvalFr",
"STSBenchmarkMultilingualSTS",
"STS22",
"SICKFr",
]
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(name)s : %(message)s"
)
logger = logging.getLogger("eval_mteb_qwen.py")
def get_detailed_instruct(task_description: str) -> str:
if not task_description:
return ""
return "Instruct: {}\nQuery: ".format(task_description)
def get_task_def_by_task_name_and_type(
task_name: str,
task_type: str,
default_instruct="Given a web search query, retrieve relevant passages that answer the query",
) -> str:
if task_type in ["STS"]:
return "Retrieve semantically similar text"
if task_type in ["Summarization"]:
return "Given a news summary, retrieve other semantically similar summaries"
if task_type in ["BitextMining"]:
return "Retrieve parallel sentences"
if task_type in ["Classification"]:
task_name_to_instruct: Dict[str, str] = {
"AmazonCounterfactualClassification": "Classify a given Amazon customer review text as either counterfactual or not-counterfactual",
"AmazonPolarityClassification": "Classify Amazon reviews into positive or negative sentiment",
"AmazonReviewsClassification": "Classify the given Amazon review into its appropriate rating category",
"Banking77Classification": "Given a online banking query, find the corresponding intents",
"EmotionClassification": "Classify the emotion expressed in the given Twitter message into one of the six emotions: anger, fear, joy, love, sadness, and surprise",
"ImdbClassification": "Classify the sentiment expressed in the given movie review text from the IMDB dataset",
"MassiveIntentClassification": "Given a user utterance as query, find the user intents",
"MassiveScenarioClassification": "Given a user utterance as query, find the user scenarios",
"MTOPDomainClassification": "Classify the intent domain of the given utterance in task-oriented conversation",
"MTOPIntentClassification": "Classify the intent of the given utterance in task-oriented conversation",
"ToxicConversationsClassification": "Classify the given comments as either toxic or not toxic",
"TweetSentimentExtractionClassification": "Classify the sentiment of a given tweet as either positive, negative, or neutral",
# C-MTEB eval instructions
"TNews": "Classify the fine-grained category of the given news title",
"IFlyTek": "Given an App description text, find the appropriate fine-grained category",
"MultilingualSentiment": "Classify sentiment of the customer review into positive, neutral, or negative",
"JDReview": "Classify the customer review for iPhone on e-commerce platform into positive or negative",
"OnlineShopping": "Classify the customer review for online shopping into positive or negative",
"Waimai": "Classify the customer review from a food takeaway platform into positive or negative",
# MTEB-pl eval instructions
"CBD": "Classify the sentiment of polish tweet reviews",
"PolEmo2.0-IN": "Classify the sentiment of in-domain (medicine and hotels) online reviews",
"PolEmo2.0-OUT": "Classify the sentiment of out-of-domain (products and school) online reviews",
"AllegroReviews": "Classify the sentiment of reviews from e-commerce marketplace Allegro",
"PAC": 'Classify the sentence into one of the two types: "BEZPIECZNE_POSTANOWIENIE_UMOWNE" and "KLAUZULA_ABUZYWNA"',
}
return task_name_to_instruct[task_name]
if task_type in ["Clustering"]:
task_name_to_instruct: Dict[str, str] = {
"ArxivClusteringP2P": "Identify the main and secondary category of Arxiv papers based on the titles and abstracts",
"ArxivClusteringS2S": "Identify the main and secondary category of Arxiv papers based on the titles",
"BiorxivClusteringP2P": "Identify the main category of Biorxiv papers based on the titles and abstracts",
"BiorxivClusteringS2S": "Identify the main category of Biorxiv papers based on the titles",
"MedrxivClusteringP2P": "Identify the main category of Medrxiv papers based on the titles and abstracts",
"MedrxivClusteringS2S": "Identify the main category of Medrxiv papers based on the titles",
"RedditClustering": "Identify the topic or theme of Reddit posts based on the titles",
"RedditClusteringP2P": "Identify the topic or theme of Reddit posts based on the titles and posts",
"StackExchangeClustering": "Identify the topic or theme of StackExchange posts based on the titles",
"StackExchangeClusteringP2P": "Identify the topic or theme of StackExchange posts based on the given paragraphs",
"TwentyNewsgroupsClustering": "Identify the topic or theme of the given news articles",
# C-MTEB eval instructions
"CLSClusteringS2S": "Identify the main category of scholar papers based on the titles",
"CLSClusteringP2P": "Identify the main category of scholar papers based on the titles and abstracts",
"ThuNewsClusteringS2S": "Identify the topic or theme of the given news articles based on the titles",
"ThuNewsClusteringP2P": "Identify the topic or theme of the given news articles based on the titles and contents",
# MTEB-fr eval instructions
"AlloProfClusteringP2P": "Identify the main category of Allo Prof document based on the titles and descriptions",
"AlloProfClusteringS2S": "Identify the main category of Allo Prof document based on the titles",
"HALClusteringS2S": "Identify the main category of academic passage based on the titles and contents",
"MasakhaNEWSClusteringP2P": "Identify the topic or theme of the given news articles based on the titles and contents",
"MasakhaNEWSClusteringS2S": "Identify the topic or theme of the given news articles based on the titles",
"MLSUMClusteringP2P": "Identify the topic or theme of the given articles based on the titles and contents",
"MLSUMClusteringS2S": "Identify the topic or theme of the given articles based on the titles",
# MTEB-pl eval instructions
"8TagsClustering": "Identify of headlines from social media posts in Polish into 8 categories: film, history, food, medicine, motorization, work, sport and technology",
}
return task_name_to_instruct[task_name]
if task_type in ["Reranking", "PairClassification"]:
task_name_to_instruct: Dict[str, str] = {
"AskUbuntuDupQuestions": "Retrieve duplicate questions from AskUbuntu forum",
"MindSmallReranking": "Retrieve relevant news articles based on user browsing history",
"SciDocsRR": "Given a title of a scientific paper, retrieve the titles of other relevant papers",
"StackOverflowDupQuestions": "Retrieve duplicate questions from StackOverflow forum",
"SprintDuplicateQuestions": "Retrieve duplicate questions from Sprint forum",
"TwitterSemEval2015": "Retrieve tweets that are semantically similar to the given tweet",
"TwitterURLCorpus": "Retrieve tweets that are semantically similar to the given tweet",
# C-MTEB eval instructions
"T2Reranking": "Given a Chinese search query, retrieve web passages that answer the question",
"MmarcoReranking": "Given a Chinese search query, retrieve web passages that answer the question",
"CMedQAv1": "Given a Chinese community medical question, retrieve replies that best answer the question",
"CMedQAv2": "Given a Chinese community medical question, retrieve replies that best answer the question",
"Ocnli": "Retrieve semantically similar text.",
"Cmnli": "Retrieve semantically similar text.",
# MTEB-fr eval instructions
"AlloprofReranking": "Given a question, retrieve passages that answer the question",
"OpusparcusPC": "Retrieve semantically similar text",
"PawsX": "Retrieve semantically similar text",
"SyntecReranking": "Given a question, retrieve passages that answer the question",
# MTEB-pl eval instructions
"SICK-E-PL": "Retrieve semantically similar text",
"PPC": "Retrieve semantically similar text",
"CDSC-E": "Retrieve semantically similar text",
"PSC": "Retrieve semantically similar text",
}
return task_name_to_instruct[task_name]
if task_type in ["Retrieval"]:
if task_name.lower().startswith("cqadupstack"):
return "Given a question, retrieve detailed question descriptions from Stackexchange that are duplicates to the given question"
task_name_to_instruct: Dict[str, str] = {
"ArguAna": "Given a claim, find documents that refute the claim",
"ClimateFEVER": "Given a claim about climate change, retrieve documents that support or refute the claim",
"DBPedia": "Given a query, retrieve relevant entity descriptions from DBPedia",
"FEVER": "Given a claim, retrieve documents that support or refute the claim",
"FiQA2018": "Given a financial question, retrieve user replies that best answer the question",
"HotpotQA": "Given a multi-hop question, retrieve documents that can help answer the question",
"MSMARCO": "Given a web search query, retrieve relevant passages that answer the query",
"NFCorpus": "Given a question, retrieve relevant documents that best answer the question",
"NQ": "Given a question, retrieve Wikipedia passages that answer the question",
"QuoraRetrieval": "Given a question, retrieve questions that are semantically equivalent to the given question",
"SCIDOCS": "Given a scientific paper title, retrieve paper abstracts that are cited by the given paper",
"SciFact": "Given a scientific claim, retrieve documents that support or refute the claim",
"Touche2020": "Given a question, retrieve detailed and persuasive arguments that answer the question",
"TRECCOVID": "Given a query on COVID-19, retrieve documents that answer the query",
# C-MTEB eval instructions
"T2Retrieval": "Given a Chinese search query, retrieve web passages that answer the question",
"MMarcoRetrieval": "Given a web search query, retrieve relevant passages that answer the query",
"DuRetrieval": "Given a Chinese search query, retrieve web passages that answer the question",
"CovidRetrieval": "Given a question on COVID-19, retrieve news articles that answer the question",
"CmedqaRetrieval": "Given a Chinese community medical question, retrieve replies that best answer the question",
"EcomRetrieval": "Given a user query from an e-commerce website, retrieve description sentences of relevant products",
"MedicalRetrieval": "Given a medical question, retrieve user replies that best answer the question",
"VideoRetrieval": "Given a video search query, retrieve the titles of relevant videos",
# MTEB-fr eval instructions
"AlloprofRetrieval": "Given a question, retrieve passages that answer the question",
"BSARDRetrieval": "Given a question, retrieve passages that answer the question",
"SyntecRetrieval": "Given a question, retrieve passages that answer the question",
"XPQARetrieval": "Given a question, retrieve passages that answer the question",
"MintakaRetrieval": "Given a question, retrieve passages that answer the question",
# MTEB-pl eval instructions
"ArguAna-PL": "Given a claim, find documents that refute the claim",
"DBPedia-PL": "Given a query, retrieve relevant entity descriptions from DBPedia",
"FiQA-PL": "Given a financial question, retrieve user replies that best answer the question",
"HotpotQA-PL": "Given a multi-hop question, retrieve documents that can help answer the question",
"MSMARCO-PL": "Given a web search query, retrieve relevant passages that answer the query",
"NFCorpus-PL": "Given a question, retrieve relevant documents that best answer the question",
"NQ-PL": "Given a question, retrieve Wikipedia passages that answer the question",
"Quora-PL": "Given a question, retrieve questions that are semantically equivalent to the given question",
"SCIDOCS-PL": "Given a scientific paper title, retrieve paper abstracts that are cited by the given paper",
"SciFact-PL": "Given a scientific claim, retrieve documents that support or refute the claim",
"TRECCOVID-PL": "Given a query on COVID-19, retrieve documents that answer the query",
}
# add lower case keys to match some beir names
task_name_to_instruct.update({k.lower(): v for k, v in task_name_to_instruct.items()})
# other cases where lower case match still doesn't work
task_name_to_instruct["trec-covid"] = task_name_to_instruct["TRECCOVID"]
task_name_to_instruct["climate-fever"] = task_name_to_instruct["ClimateFEVER"]
task_name_to_instruct["dbpedia-entity"] = task_name_to_instruct["DBPedia"]
task_name_to_instruct["webis-touche2020"] = task_name_to_instruct["Touche2020"]
task_name_to_instruct["fiqa"] = task_name_to_instruct["FiQA2018"]
task_name_to_instruct["quora"] = task_name_to_instruct["QuoraRetrieval"]
# for miracl evaluation
task_name_to_instruct["miracl"] = (
"Given a question, retrieve Wikipedia passages that answer the question"
)
return task_name_to_instruct[task_name]
logging.warning(
f"No instruction config for task {task_name} with type {task_type}, use default instruction."
)
return default_instruct
class Encoder(torch.nn.Module):
def __init__(self, name_or_path: str, pooling: str):
super().__init__()
self.model = AutoModel.from_pretrained(name_or_path, trust_remote_code=True)
self.model = self.model.half()
self.model.eval()
self.pooling = pooling
def forward(self, **features) -> torch.Tensor:
output = self.model(**features, output_hidden_states=True, return_dict=True)
hidden_state = output.hidden_states[-1]
embeddings = self.pooler(hidden_state, **features)
return embeddings
def pooler(
self, hidden_state: torch.Tensor, attention_mask: torch.Tensor, **kwargs
) -> torch.Tensor:
if attention_mask.ndim == 2:
mask_expanded = attention_mask.unsqueeze(-1).expand(hidden_state.size())
elif attention_mask.ndim == 3:
mask_expanded = attention_mask
else:
raise RuntimeError(f"Unexpected {attention_mask.ndim=}")
hidden_state = hidden_state * mask_expanded
if self.pooling == "first":
pooled_output = hidden_state[:, 0]
elif self.pooling == "last":
left_padding = attention_mask[:, -1].sum() == attention_mask.shape[0]
if left_padding:
return hidden_state[:, -1]
else:
sequence_lengths = attention_mask.sum(dim=1) - 1
batch_size = hidden_state.shape[0]
return hidden_state[
torch.arange(batch_size, device=hidden_state.device), sequence_lengths
]
elif self.pooling == "mean":
# TODO: weight
lengths = mask_expanded.sum(1).clamp(min=1e-9)
pooled_output = hidden_state.sum(dim=1) / lengths
elif self.pooling == "weightedmean":
input_mask_expanded = attention_mask.unsqueeze(-1).expand(hidden_state.size()).float()
# hidden_state shape: bs, seq, hidden_dim
weights = (
torch.arange(start=1, end=hidden_state.shape[1] + 1)
.unsqueeze(0)
.unsqueeze(-1)
.expand(hidden_state.size())
.float()
.to(hidden_state.device)
)
assert weights.shape == hidden_state.shape == input_mask_expanded.shape
input_mask_expanded = input_mask_expanded * weights
sum_embeddings = torch.sum(hidden_state * input_mask_expanded, 1)
sum_mask = input_mask_expanded.sum(1)
sum_mask = torch.clamp(sum_mask, min=1e-9)
pooled_output = sum_embeddings / sum_mask
else:
raise ValueError(f"Wrong pooler mode : {self.pooling}")
return pooled_output
class Wrapper:
def __init__(
self,
tokenizer,
encoder: Encoder,
batch_size: int,
max_seq_len: int = 512,
normalize_embeddings: bool = False,
default_query: bool = False,
force_default: bool = False,
sep: str = " ",
mp_tensor_to_cuda: bool = False,
instruction: Optional[str] = None,
):
self.tokenizer = tokenizer
self.model = encoder
self.batch_size = batch_size
self.max_seq_len = max_seq_len
self.pool: Optional[dict] = None
self.normalize_embeddings = normalize_embeddings
self.mp_tensor_to_cuda = mp_tensor_to_cuda
self._target_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.eod_id = self.tokenizer.convert_tokens_to_ids("<|endoftext|>")
self.instruction = instruction
self.default_query = default_query
self.sep = sep
self.force_default = force_default
if self.tokenizer.padding_side != "right":
logger.warning(
f"Change tokenizer.padding_side from {self.tokenizer.padding_side} to right"
)
self.tokenizer.padding_side = "right"
if self.tokenizer.pad_token is None:
logger.warning(f"Set tokenizer.pad_token as eos_token {self.tokenizer.eos_token}")
self.tokenizer.pad_token = "<|endoftext|>"
def start(self, target_devices: Optional[List[str]] = None):
"""
Starts multi process to process the encoding with several, independent processes.
This method is recommended if you want to encode on multiple GPUs. It is advised
to start only one process per GPU. This method works together with encode_multi_process
:param target_devices: PyTorch target devices, e.g. cuda:0, cuda:1... If None, all available CUDA devices will be used
:return: Returns a dict with the target processes, an input queue and and output queue.
"""
if target_devices is None:
if torch.cuda.is_available():
target_devices = ["cuda:{}".format(i) for i in range(torch.cuda.device_count())]
else:
logger.info("CUDA is not available. Start 4 CPU worker")
target_devices = ["cpu"] * 4
logger.info(
"Start multi-process pool on devices: {}".format(", ".join(map(str, target_devices)))
)
print("multi instruction", self.instruction)
ctx = mp.get_context("spawn")
input_queue = ctx.Queue()
output_queue = ctx.Queue()
processes = []
for cuda_id in target_devices:
p = ctx.Process(
target=self._encode_multi_process_worker,
args=(cuda_id, self, input_queue, output_queue),
daemon=True,
)
p.start()
processes.append(p)
self.pool = {"input": input_queue, "output": output_queue, "processes": processes}
def stop(self):
"""
Stops all processes started with start_multi_process_pool
"""
for p in self.pool["processes"]:
p.terminate()
for p in self.pool["processes"]:
p.join()
p.close()
self.pool["input"].close()
self.pool["output"].close()
@staticmethod
def _encode_multi_process_worker(target_device: str, model, input_queue, results_queue):
"""
Internal working process to encode sentences in multi-process setup
"""
while True:
try:
id, sentences, kwargs = input_queue.get()
kwargs.update(device=target_device, show_progress_bar=False, convert_to_numpy=True)
embeddings = model._encode(sentences, **kwargs)
results_queue.put([id, embeddings])
except queue.Empty:
break
def encode_multi_process(self, sentences: List[str], **kwargs):
"""
This method allows to run encode() on multiple GPUs. The sentences are chunked into smaller packages
and sent to individual processes, which encode these on the different GPUs. This method is only suitable
for encoding large sets of sentences
:param sentences: List of sentences
:param pool: A pool of workers started with SentenceTransformer.start_multi_process_pool
:param chunk_size: Sentences are chunked and sent to the individual processes. If none, it determine a sensible size.
:param kwargs: other keyword arguments for model.encode() such as batch_size
:return: Numpy matrix with all embeddings
"""
part_size = math.ceil(len(sentences) / len(self.pool["processes"]))
chunk_size = part_size if part_size < 3200 else 3200 # for retrieval chunk 50000
logger.debug(
f"Chunk data into {math.ceil(len(sentences) / chunk_size)} packages of size {chunk_size}"
)
input_queue = self.pool["input"]
last_chunk_id = 0
chunk = []
for sentence in sentences:
chunk.append(sentence)
if len(chunk) >= chunk_size:
input_queue.put([last_chunk_id, chunk, kwargs])
last_chunk_id += 1
chunk = []
if len(chunk) > 0:
input_queue.put([last_chunk_id, chunk, kwargs])
last_chunk_id += 1
output_queue = self.pool["output"]
results_list = sorted(
[output_queue.get() for _ in range(last_chunk_id)], key=lambda x: x[0]
)
embeddings = np.concatenate([result[1] for result in results_list])
return embeddings
@staticmethod
def batch_to_device(batch, target_device):
"""
send a pytorch batch to a device (CPU/GPU)
"""
for key in batch:
if isinstance(batch[key], torch.Tensor):
batch[key] = batch[key].to(target_device)
return batch
def _text_length(self, text: Union[List[int], List[List[int]]]):
"""
Help function to get the length for the input text. Text can be either
a list of ints (which means a single text as input), or a tuple of list of ints
(representing several text inputs to the model).
"""
if isinstance(text, dict): # {key: value} case
return len(next(iter(text.values())))
elif not hasattr(text, "__len__"): # Object has no len() method
return 1
elif len(text) == 0 or isinstance(text[0], int): # Empty string or list of ints
return len(text)
else:
return sum([len(t) for t in text]) # Sum of length of individual strings
def _tokenize(self, sentences: List[str], is_query: bool):
batch_dict = self.tokenizer(
sentences,
max_length=self.max_seq_len - 1,
return_attention_mask=False,
padding=False,
truncation=True,
)
batch_dict["input_ids"] = [
input_ids + [self.tokenizer.eos_token_id] for input_ids in batch_dict["input_ids"]
]
batch_dict = self.tokenizer.pad(
batch_dict, padding=True, return_attention_mask=True, return_tensors="pt"
)
batch_dict["is_causal"] = False
return batch_dict
def _encode(
self,
sentences: List[str],
is_query: bool,
convert_to_numpy: bool = True,
convert_to_tensor: bool = False,
device: Optional[str] = None,
show_progress_bar: bool = True,
**kwargs,
):
"""
Computes sentence embeddings
:param sentences: the sentences to embed
:param batch_size: the batch size used for the computation
:param show_progress_bar: Output a progress bar when encode sentences
:param output_value: Default sentence_embedding, to get sentence embeddings. Can be set to token_embeddings to get wordpiece token embeddings. Set to None, to get all output values
:param convert_to_numpy: If true, the output is a list of numpy vectors. Else, it is a list of pytorch tensors.
:param convert_to_tensor: If true, you get one large tensor as return. Overwrites any setting from convert_to_numpy
:param device: Which torch.device to use for the computation
:param normalize_embeddings: If set to true, returned vectors will have length 1. In that case, the faster dot-product (util.dot_score) instead of cosine similarity can be used.
:return:
By default, a list of tensors is returned. If convert_to_tensor, a stacked tensor is returned. If convert_to_numpy, a numpy matrix is returned.
"""
self.model.eval()
if convert_to_tensor:
convert_to_numpy = False
input_was_string = False
if isinstance(sentences, str) or not hasattr(
sentences, "__len__"
): # Cast an individual sentence to a list with length 1
sentences = [sentences]
input_was_string = True
if device is None:
device = self._target_device
self.model.to(device)
all_embeddings = []
length_sorted_idx = np.argsort([-self._text_length(s) for s in sentences])
sentences_sorted = [sentences[idx] for idx in length_sorted_idx]
for start_index in trange(
0, len(sentences), self.batch_size, desc="Batches", disable=not show_progress_bar
):
sentences_batch = sentences_sorted[start_index : start_index + self.batch_size]
features = self._tokenize(sentences_batch, is_query)
features = self.batch_to_device(features, device)
with torch.no_grad():
embeddings = self.model(**features)
if self.normalize_embeddings:
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
# fixes for #522 and #487 to avoid oom problems on gpu with large datasets
if convert_to_numpy:
embeddings = embeddings.cpu()
all_embeddings.extend(embeddings)
all_embeddings = [all_embeddings[idx] for idx in np.argsort(length_sorted_idx)]
if convert_to_tensor:
all_embeddings = torch.stack(all_embeddings)
elif convert_to_numpy:
# all_embeddings = np.asarray([emb.numpy() for emb in all_embeddings])
all_embeddings = np.asarray([emb.to(torch.float).numpy() for emb in all_embeddings])
if input_was_string:
all_embeddings = all_embeddings[0]
return all_embeddings
def encode(
self,
sentences: List[str],
is_query: Optional[bool] = None,
convert_to_tensor: bool = False,
**kwargs,
):
is_query = self.default_query if is_query is None else is_query
if is_query and self.instruction:
sentences = [self.instruction + sent for sent in sentences]
kwargs.update(is_query=is_query)
if self.pool is not None:
kwargs.update(show_progress_bar=False)
embeddings = self.encode_multi_process(sentences, **kwargs)
if convert_to_tensor:
embeddings = torch.from_numpy(embeddings)
if self.mp_tensor_to_cuda and torch.cuda.is_available():
embeddings = embeddings.to(torch.device("cuda")) # default 0-th gpu
return embeddings
return self._encode(sentences, convert_to_tensor=convert_to_tensor, **kwargs)
def encode_queries(self, queries: List[str], **kwargs):
is_query = self.default_query if self.force_default else True
return self.encode(queries, is_query=is_query, **kwargs)
def encode_corpus(self, corpus: List[Dict[str, str]], **kwargs):
# borrowed from mteb.abstasks.AbsTaskRetrieval.DRESModel
if type(corpus) is dict:
sentences = [
(corpus["title"][i] + self.sep + corpus["text"][i]).strip()
if "title" in corpus
else corpus["text"][i].strip()
for i in range(len(corpus["text"]))
]
elif isinstance(corpus[0], dict):
sentences = [
(doc["title"] + self.sep + doc["text"]).strip()
if "title" in doc
else doc["text"].strip()
for doc in corpus
]
else:
sentences = corpus
is_query = self.default_query if self.force_default else False
return self.encode(sentences, is_query=is_query, **kwargs)
def main(args):
tokenizer = AutoTokenizer.from_pretrained(args.model, trust_remote_code=True)
encoder = Encoder(args.model, args.pooling)
default_query = args.default_type == "query"
model = Wrapper(
tokenizer,
encoder,
batch_size=args.batch_size,
max_seq_len=args.max_seq_len,
normalize_embeddings=args.norm,
default_query=default_query,
)
sym_retrievals = ["QuoraRetrieval", "ArguAna", "CQADupstack"]
if args.task == "mteb":
task_names = MTEB_TASK_LIST
lang = ["en"]
elif args.task == "cmteb":
task_names = CMTEB_TASK_LIST
lang = ["zh", "zh-CN"]
elif args.task == "mteb-fr":
task_names = MTEB_FR
lang = ["fr"]
elif args.task == "mteb-pl":
task_names = MTEB_PL
lang = ["pl"]
else:
task_names = [args.task]
lang = ["en", "zh", "zh-CN", "pl", "fr"]
for task in task_names:
evaluation = MTEB(tasks=[task], task_langs=lang)
task_cls = evaluation.tasks[0]
task_name: str = task_cls.metadata_dict["name"]
task_type: str = task_cls.metadata_dict["type"]
instruction = get_task_def_by_task_name_and_type(task_name, task_type)
model.instruction = get_detailed_instruct(instruction)
if task == "MSMARCO":
eval_splits = ["dev"]
elif task in CMTEB_TASK_LIST:
eval_splits = task_cls.metadata_dict["eval_splits"]
else:
eval_splits = ["test"]
sym = False
for name in sym_retrievals:
if task.startswith(name):
sym = True
break
else:
sym = False
if sym:
logger.info(
f"Switch to symmetric mode for {task}, all as {'query' if default_query else 'doc'}."
)
model.force_default = True
evaluation.run(model, output_folder=args.output_dir, eval_splits=eval_splits)
if sym:
logger.info(f"Switch back.")
model.force_default = force_default_ori
print("\n")
if __name__ == "__main__":
_PARSER = argparse.ArgumentParser()
_PARSER.add_argument("-m", "--model", type=str, default=None)
_PARSER.add_argument("--pooling", type=str, default="last")
_PARSER.add_argument("--output_dir", type=str, default=None)
_PARSER.add_argument("--default_type", type=str, default="query")
_PARSER.add_argument("--max_seq_len", type=int, default=512)
_PARSER.add_argument("-b", "--batch_size", type=int, default=32)
_PARSER.add_argument(
"-t",
"--task",
type=str,
default=None, # None for running default tasks
)
_PARSER.add_argument("--norm", action="store_true")
_ARGS = _PARSER.parse_args()
main(_ARGS)
|