File size: 2,114 Bytes
2464822 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
base_model: distilbert/distilbert-base-uncased
library_name: peft
license: apache-2.0
metrics:
- accuracy
tags:
- generated_from_trainer
model-index:
- name: news-category-classifier-distilbert
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# news-category-classifier-distilbert
This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1640
- Accuracy: 0.9474
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:-----:|:--------:|:---------------:|
| 0.3293 | 1.0 | 2289 | 0.9119 | 0.2599 |
| 0.0576 | 2.0 | 4578 | 0.9193 | 0.2425 |
| 0.4575 | 3.0 | 6867 | 0.9223 | 0.2401 |
| 0.0339 | 4.0 | 9156 | 0.9245 | 0.2353 |
| 0.0512 | 5.0 | 11445 | 0.9267 | 0.2367 |
| 0.3254 | 6.0 | 13734 | 0.9267 | 0.2367 |
| 0.5933 | 7.0 | 16023 | 0.9482 | 0.1654 |
| 0.136 | 8.0 | 18312 | 0.9482 | 0.1654 |
| 0.3128 | 9.0 | 20601 | 0.1640 | 0.9474 |
| 0.0458 | 10.0 | 22890 | 0.1640 | 0.9474 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1 |