PommesPeter
commited on
Merge branch 'main' of https://huggingface.co/Alpha-VLLM/Lumina-Next-SFT-diffusers into main
Browse files
README.md
CHANGED
@@ -27,7 +27,7 @@ Our generative model has `Next-DiT` as the backbone, the text encoder is the `Ge
|
|
27 |
|
28 |
## π° News
|
29 |
|
30 |
-
- [2024-06-
|
31 |
|
32 |
- [2024-06-08] πππ We have released the `Lumina-Next-SFT` model.
|
33 |
|
@@ -43,180 +43,54 @@ More checkpoints of our model will be released soon~
|
|
43 |
|
44 |
| Resolution | Next-DiT Parameter| Text Encoder | Prediction | Download URL |
|
45 |
| ---------- | ----------------------- | ------------ | -----------|-------------- |
|
46 |
-
| 1024
|
47 |
|
48 |
## Installation
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
```bash
|
53 |
-
# The command should work and show the same version number as in our case. (12.1 in our case).
|
54 |
-
nvcc --version
|
55 |
-
```
|
56 |
|
57 |
-
|
58 |
-
``gcc`` is available
|
59 |
|
60 |
```bash
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
```
|
65 |
|
66 |
-
|
67 |
|
68 |
```bash
|
69 |
-
|
70 |
```
|
71 |
|
72 |
-
### 1. Create a conda environment and install PyTorch
|
73 |
-
|
74 |
-
Note: You may want to adjust the CUDA version [according to your driver version](https://docs.nvidia.com/deploy/cuda-compatibility/#default-to-minor-version).
|
75 |
-
|
76 |
-
```bash
|
77 |
-
conda create -n Lumina_T2X -y
|
78 |
-
conda activate Lumina_T2X
|
79 |
-
conda install python=3.11 pytorch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 pytorch-cuda=12.1 -c pytorch -c nvidia -y
|
80 |
-
```
|
81 |
-
|
82 |
-
### 2. Install dependencies
|
83 |
-
|
84 |
-
```bash
|
85 |
-
pip install diffusers fairscale accelerate tensorboard transformers gradio torchdiffeq click
|
86 |
-
```
|
87 |
-
|
88 |
-
or you can use
|
89 |
-
|
90 |
-
```bash
|
91 |
-
cd lumina_next_t2i
|
92 |
-
pip install -r requirements.txt
|
93 |
-
```
|
94 |
-
|
95 |
### 3. Install ``flash-attn``
|
96 |
|
97 |
-
```bash
|
98 |
-
pip install flash-attn --no-build-isolation
|
99 |
-
```
|
100 |
-
|
101 |
-
### 4. Install [nvidia apex](https://github.com/nvidia/apex) (optional)
|
102 |
-
|
103 |
-
>[!Warning]
|
104 |
-
> While Apex can improve efficiency, it is *not* a must to make Lumina-T2X work.
|
105 |
-
>
|
106 |
-
> Note that Lumina-T2X works smoothly with either:
|
107 |
-
> + Apex not installed at all; OR
|
108 |
-
> + Apex successfully installed with CUDA and C++ extensions.
|
109 |
-
>
|
110 |
-
> However, it will fail when:
|
111 |
-
> + A Python-only build of Apex is installed.
|
112 |
-
>
|
113 |
-
> If the error `No module named 'fused_layer_norm_cuda'` appears, it typically means you are using a Python-only build of Apex. To resolve this, please run `pip uninstall apex`, and Lumina-T2X should then function correctly.
|
114 |
-
|
115 |
-
You can clone the repo and install following the official guidelines (note that we expect a full
|
116 |
-
build, i.e., with CUDA and C++ extensions)
|
117 |
-
|
118 |
```bash
|
119 |
-
pip install
|
120 |
-
git clone https://github.com/NVIDIA/apex
|
121 |
-
cd apex
|
122 |
-
# if pip >= 23.1 (ref: https://pip.pypa.io/en/stable/news/#v23-1) which supports multiple `--config-settings` with the same key...
|
123 |
-
pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" ./
|
124 |
-
# otherwise
|
125 |
-
pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --global-option="--cpp_ext" --global-option="--cuda_ext" ./
|
126 |
```
|
127 |
|
128 |
## Inference
|
129 |
|
130 |
-
To ensure that our generative model is ready to use right out of the box, we provide a user-friendly CLI program and a locally deployable Web Demo site.
|
131 |
-
|
132 |
-
### CLI
|
133 |
-
|
134 |
-
1. Install Lumina-Next-T2I
|
135 |
-
|
136 |
-
```bash
|
137 |
-
pip install -e .
|
138 |
-
```
|
139 |
|
140 |
-
|
141 |
|
142 |
ββ (Recommended) you can use huggingface_cli to download our model:
|
143 |
|
144 |
```bash
|
145 |
-
huggingface-cli download --resume-download Alpha-VLLM/Lumina-Next-SFT --local-dir /path/to/ckpt
|
146 |
```
|
147 |
|
148 |
-
|
149 |
|
150 |
-
```
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
1. Setting your personal inference configuration
|
155 |
-
|
156 |
-
Update your own personal inference settings to generate different styles of images, checking `config/infer/config.yaml` for detailed settings. Detailed config structure:
|
157 |
-
|
158 |
-
> `/path/to/ckpt` should be a directory containing `consolidated*.pth` and `model_args.pth`
|
159 |
-
|
160 |
-
```yaml
|
161 |
-
- settings:
|
162 |
-
|
163 |
-
model:
|
164 |
-
ckpt: ""
|
165 |
-
ckpt_lm: ""
|
166 |
-
token: ""
|
167 |
-
|
168 |
-
transport:
|
169 |
-
path_type: "Linear" # option: ["Linear", "GVP", "VP"]
|
170 |
-
prediction: "velocity" # option: ["velocity", "score", "noise"]
|
171 |
-
loss_weight: "velocity" # option: [None, "velocity", "likelihood"]
|
172 |
-
sample_eps: 0.1
|
173 |
-
train_eps: 0.2
|
174 |
-
|
175 |
-
ode:
|
176 |
-
atol: 1e-6 # Absolute tolerance
|
177 |
-
rtol: 1e-3 # Relative tolerance
|
178 |
-
reverse: false # option: true or false
|
179 |
-
likelihood: false # option: true or false
|
180 |
-
|
181 |
-
infer:
|
182 |
-
resolution: "1024x1024" # option: ["1024x1024", "512x2048", "2048x512", "(Extrapolation) 1664x1664", "(Extrapolation) 1024x2048", "(Extrapolation) 2048x1024"]
|
183 |
-
num_sampling_steps: 60 # range: 1-1000
|
184 |
-
cfg_scale: 4. # range: 1-20
|
185 |
-
solver: "euler" # option: ["euler", "dopri5", "dopri8"]
|
186 |
-
t_shift: 4 # range: 1-20 (int only)
|
187 |
-
scaling_method: "Time-aware" # option: ["Time-aware", "None"]
|
188 |
-
scale_watershed: 0.3 # range: 0.0-1.0
|
189 |
-
proportional_attn: true # option: true or false
|
190 |
-
seed: 0 # rnage: any number
|
191 |
-
```
|
192 |
|
193 |
-
|
194 |
|
195 |
-
|
196 |
-
|
197 |
-
lumina_next infer -c <config_path> <caption_here> <output_dir>
|
198 |
-
```
|
199 |
|
200 |
-
|
201 |
-
|
202 |
-
```bash
|
203 |
-
cd lumina_next_t2i
|
204 |
-
lumina_next infer -c "config/infer/settings.yaml" "a snowman of ..." "./outputs"
|
205 |
```
|
206 |
-
|
207 |
-
### Web Demo
|
208 |
-
|
209 |
-
To host a local gradio demo for interactive inference, run the following command:
|
210 |
-
|
211 |
-
```bash
|
212 |
-
# `/path/to/ckpt` should be a directory containing `consolidated*.pth` and `model_args.pth`
|
213 |
-
|
214 |
-
# default
|
215 |
-
python -u demo.py --ckpt "/path/to/ckpt"
|
216 |
-
|
217 |
-
# the demo by default uses bf16 precision. to switch to fp32:
|
218 |
-
python -u demo.py --ckpt "/path/to/ckpt" --precision fp32
|
219 |
-
|
220 |
-
# use ema model
|
221 |
-
python -u demo.py --ckpt "/path/to/ckpt" --ema
|
222 |
-
```
|
|
|
27 |
|
28 |
## π° News
|
29 |
|
30 |
+
- [2024-06-23] πππ We have supported diffusers to load the `Lumina-Next-SFT` model. https://huggingface.co/Alpha-VLLM/Lumina-Next-SFT-diffusers
|
31 |
|
32 |
- [2024-06-08] πππ We have released the `Lumina-Next-SFT` model.
|
33 |
|
|
|
43 |
|
44 |
| Resolution | Next-DiT Parameter| Text Encoder | Prediction | Download URL |
|
45 |
| ---------- | ----------------------- | ------------ | -----------|-------------- |
|
46 |
+
| 1024 | 2B | [Gemma-2B](https://huggingface.co/google/gemma-2b) | Rectified Flow | [hugging face](https://huggingface.co/Alpha-VLLM/Lumina-Next-SFT-diffusers) |
|
47 |
|
48 |
## Installation
|
49 |
|
50 |
+
### 1. Create a conda environment and install PyTorch
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
Note: You may want to adjust the CUDA version [according to your driver version](https://docs.nvidia.com/deploy/cuda-compatibility/#default-to-minor-version).
|
|
|
53 |
|
54 |
```bash
|
55 |
+
conda create -n Lumina_T2X -y
|
56 |
+
conda activate Lumina_T2X
|
57 |
+
conda install python=3.11 pytorch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 pytorch-cuda=12.1 -c pytorch -c nvidia -y
|
58 |
```
|
59 |
|
60 |
+
### 2. Install dependencies
|
61 |
|
62 |
```bash
|
63 |
+
pip install diffusers huggingface_hub
|
64 |
```
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
### 3. Install ``flash-attn``
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
```bash
|
69 |
+
pip install flash-attn --no-build-isolation
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
```
|
71 |
|
72 |
## Inference
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
1. Prepare the pre-trained model
|
76 |
|
77 |
ββ (Recommended) you can use huggingface_cli to download our model:
|
78 |
|
79 |
```bash
|
80 |
+
huggingface-cli download --resume-download Alpha-VLLM/Lumina-Next-SFT-diffusers --local-dir /path/to/ckpt
|
81 |
```
|
82 |
|
83 |
+
2. Run with demo code:
|
84 |
|
85 |
+
```python
|
86 |
+
from diffusers import LuminaText2ImgPipeline
|
87 |
+
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
+
pipeline = LuminaText2ImgPipeline.from_pretrained("/path/to/ckpt/Lumina-Next-SFT-diffusers", torch_dtype=torch.bfloat16).to("cuda")
|
90 |
|
91 |
+
# or you can download the model using code directly
|
92 |
+
# pipeline = LuminaText2ImgPipeline.from_pretrained("Alpha-VLLM/Lumina-Next-SFT-diffusers", torch_dtype=torch.bfloat16).to("cuda")
|
|
|
|
|
93 |
|
94 |
+
image = pipeline(prompt="Upper body of a young woman in a Victorian-era outfit with brass goggles and leather straps. "
|
95 |
+
"Background shows an industrial revolution cityscape with smoky skies and tall, metal structures").images[0]
|
|
|
|
|
|
|
96 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|