import os | |
import pyarrow.parquet as pq | |
def extract_parquet_files(directory): | |
# Create a directory to store the extracted CSV files | |
output_directory = "extracted_csv_files" | |
os.makedirs(output_directory, exist_ok=True) | |
# Iterate over files in the directory | |
for filename in os.listdir(directory): | |
# Check if the file has a .parquet extension | |
if filename.endswith(".parquet"): | |
file_path = os.path.join(directory, filename) | |
# Read the parquet file | |
table = pq.read_table(file_path) | |
# Extract the data from the parquet file | |
data = table.to_pandas() | |
# Generate the output CSV file path | |
csv_filename = os.path.splitext(filename)[0] + ".csv" | |
csv_file_path = os.path.join(output_directory, csv_filename) | |
# Save the extracted data as a CSV file | |
data.to_csv(csv_file_path, index=False) | |
print(f"Extracted data from {filename} saved as {csv_filename}") | |
# Directory containing the parquet files | |
parquet_directory = "hindi" | |
# Call the function to extract parquet files | |
extract_parquet_files(parquet_directory) | |