Amalq commited on
Commit
2b0b449
1 Parent(s): ea5b40f

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - shared_TaskA
7
+ metrics:
8
+ - rouge
9
+ model-index:
10
+ - name: flan-t5-base-dialogue
11
+ results:
12
+ - task:
13
+ name: Sequence-to-sequence Language Modeling
14
+ type: text2text-generation
15
+ dataset:
16
+ name: shared_TaskA
17
+ type: shared_TaskA
18
+ config: shared_TaskA
19
+ split: train
20
+ args: samsum
21
+ metrics:
22
+ - name: Rouge1
23
+ type: rouge
24
+ value: 28.1748
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # flan-t5-base-samsum
31
+
32
+ This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the shared_TaskA dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 2.5153
35
+ - Rouge1: 28.1748
36
+ - Rouge2: 14.384
37
+ - Rougel: 27.6673
38
+ - Rougelsum: 27.8465
39
+ - Gen Len: 18.85
40
+
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 5e-05
48
+ - train_batch_size: 8
49
+ - eval_batch_size: 8
50
+ - seed: 42
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 5
54
+
55
+ ### Training results
56
+
57
+ Training Loss Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
58
+ No log 2.554769 27.797100 14.471000 27.468300 27.617000 18.970000
59
+ No log 2.515381 28.174800 14.384000 27.667300 27.846500 18.850000
60
+ No log 2.542737 27.982600 14.754000 27.559000 27.834200 18.800000
61
+ 1.809200 2.528819 28.010600 15.268300 27.816000 27.999000 18.690000
62
+ 1.809200 2.534979 28.104800 15.248000 27.840400 28.069500 18.670000
63
+