Training in progress, epoch 1, checkpoint
Browse files- last-checkpoint/added_tokens.json +5 -0
- last-checkpoint/config.json +29 -0
- last-checkpoint/generation_config.json +6 -0
- last-checkpoint/global_step834/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- last-checkpoint/global_step834/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- last-checkpoint/global_step834/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- last-checkpoint/global_step834/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- last-checkpoint/global_step834/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- last-checkpoint/global_step834/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- last-checkpoint/latest +1 -0
- last-checkpoint/merges.txt +0 -0
- last-checkpoint/model-00001-of-00004.safetensors +3 -0
- last-checkpoint/model-00002-of-00004.safetensors +3 -0
- last-checkpoint/model-00003-of-00004.safetensors +3 -0
- last-checkpoint/model-00004-of-00004.safetensors +3 -0
- last-checkpoint/model.safetensors.index.json +346 -0
- last-checkpoint/rng_state_0.pth +3 -0
- last-checkpoint/rng_state_1.pth +3 -0
- last-checkpoint/rng_state_2.pth +3 -0
- last-checkpoint/scheduler.pt +3 -0
- last-checkpoint/special_tokens_map.json +20 -0
- last-checkpoint/tokenizer.json +3 -0
- last-checkpoint/tokenizer_config.json +47 -0
- last-checkpoint/trainer_state.json +1309 -0
- last-checkpoint/training_args.bin +3 -0
- last-checkpoint/vocab.json +0 -0
- last-checkpoint/zero_to_fp32.py +760 -0
last-checkpoint/added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|endoftext|>": 151643,
|
3 |
+
"<|im_end|>": 151645,
|
4 |
+
"<|im_start|>": 151644
|
5 |
+
}
|
last-checkpoint/config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "AmberYifan/Qwen2-7B-sft-ultrachat-safeRLHF",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151643,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 3584,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 18944,
|
13 |
+
"max_position_embeddings": 131072,
|
14 |
+
"max_window_layers": 28,
|
15 |
+
"model_type": "qwen2",
|
16 |
+
"num_attention_heads": 28,
|
17 |
+
"num_hidden_layers": 28,
|
18 |
+
"num_key_value_heads": 4,
|
19 |
+
"rms_norm_eps": 1e-06,
|
20 |
+
"rope_scaling": null,
|
21 |
+
"rope_theta": 1000000.0,
|
22 |
+
"sliding_window": null,
|
23 |
+
"tie_word_embeddings": false,
|
24 |
+
"torch_dtype": "bfloat16",
|
25 |
+
"transformers_version": "4.46.3",
|
26 |
+
"use_cache": false,
|
27 |
+
"use_sliding_window": false,
|
28 |
+
"vocab_size": 152064
|
29 |
+
}
|
last-checkpoint/generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"eos_token_id": 151643,
|
4 |
+
"max_new_tokens": 2048,
|
5 |
+
"transformers_version": "4.46.3"
|
6 |
+
}
|
last-checkpoint/global_step834/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:874554f120526282acd79c21d7c4ea6f34b1e39eda3eac4be4e7aa1811c62067
|
3 |
+
size 20308318462
|
last-checkpoint/global_step834/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28473bc66b4ae22df63745906ca120730a1444508f12e74f4cedee45849b1252
|
3 |
+
size 20308318462
|
last-checkpoint/global_step834/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6dded09dab9a7abac36bc78033557b49a943bcebe28f2cf9e59e6eca9b40044e
|
3 |
+
size 20308318462
|
last-checkpoint/global_step834/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e4227380e9aa012e7180857009619d19fca3141953b35bcc650c05235cc823dc
|
3 |
+
size 168021
|
last-checkpoint/global_step834/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bda4c60ba2aed1e5c3df064d04070f06762ab42866984df87dfecf1923beac8c
|
3 |
+
size 168021
|
last-checkpoint/global_step834/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6a31aa0dd0ffac10d3f8b42cfdedce1761541fdafc650a3e029ad4fa625b860
|
3 |
+
size 168021
|
last-checkpoint/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step834
|
last-checkpoint/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
last-checkpoint/model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a8190906700ee780cdf9acef8480699fc35cfb00ff01029df21b9e5f7ab53641
|
3 |
+
size 4877660776
|
last-checkpoint/model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e4dffbd398d07477c8a7667bb9c64c4f99a093d5c0e9a83c85a03ce07e380dd4
|
3 |
+
size 4932751008
|
last-checkpoint/model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d648bd6bf235062ab5f0b53f51b22a7a298cc0a91a896c228d384daa7816b75
|
3 |
+
size 4330865200
|
last-checkpoint/model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8acd8efe43798b3349ea7b07aca8ae9990b114f09dbe94b99ce669e8d7debe0e
|
3 |
+
size 1089994880
|
last-checkpoint/model.safetensors.index.json
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 15231233024
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
260 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
261 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
262 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
263 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
264 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
265 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
266 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
267 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
268 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
269 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
270 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
272 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
273 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
274 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
275 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
276 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
277 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
278 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
279 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
280 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
281 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
282 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
283 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
284 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
285 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
286 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
287 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
288 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
289 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
290 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
291 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
292 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
293 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
294 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
295 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
296 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
297 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
298 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
299 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
300 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
301 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
302 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
303 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
304 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
305 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
306 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
307 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
308 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
309 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
310 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
311 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
312 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
313 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
314 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
315 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
316 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
317 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
318 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
319 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
320 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
321 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
322 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
323 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
324 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
325 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
326 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
327 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
328 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
329 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
330 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
331 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
332 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
333 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
334 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
335 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
336 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
337 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
338 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
339 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
340 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
341 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
342 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
343 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
344 |
+
"model.norm.weight": "model-00003-of-00004.safetensors"
|
345 |
+
}
|
346 |
+
}
|
last-checkpoint/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b580656286e8a6f334aced7bdb46499a54f3bb95644a0167405da037afbd894d
|
3 |
+
size 14768
|
last-checkpoint/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a763d1d109f11374f3725ac97283433a5c2264a51fd11d55a5af0441e79bbe2c
|
3 |
+
size 14768
|
last-checkpoint/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5685be549346816d411abdb06552706ef94ec9c1b6cb3302d99d90f37622b797
|
3 |
+
size 14768
|
last-checkpoint/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55febb44a9d245e649a9b6071529c6f084be4339b0c0578ab70892487be29366
|
3 |
+
size 1064
|
last-checkpoint/special_tokens_map.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>"
|
5 |
+
],
|
6 |
+
"eos_token": {
|
7 |
+
"content": "<|endoftext|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"pad_token": {
|
14 |
+
"content": "<|endoftext|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
}
|
20 |
+
}
|
last-checkpoint/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bcfe42da0a4497e8b2b172c1f9f4ec423a46dc12907f4349c55025f670422ba9
|
3 |
+
size 11418266
|
last-checkpoint/tokenizer_config.json
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"additional_special_tokens": [
|
30 |
+
"<|im_start|>",
|
31 |
+
"<|im_end|>"
|
32 |
+
],
|
33 |
+
"bos_token": null,
|
34 |
+
"chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}",
|
35 |
+
"clean_up_tokenization_spaces": false,
|
36 |
+
"eos_token": "<|endoftext|>",
|
37 |
+
"errors": "replace",
|
38 |
+
"max_length": 1024,
|
39 |
+
"model_max_length": 32768,
|
40 |
+
"pad_token": "<|endoftext|>",
|
41 |
+
"split_special_tokens": false,
|
42 |
+
"stride": 0,
|
43 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
44 |
+
"truncation_side": "left",
|
45 |
+
"truncation_strategy": "longest_first",
|
46 |
+
"unk_token": null
|
47 |
+
}
|
last-checkpoint/trainer_state.json
ADDED
@@ -0,0 +1,1309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 834,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.001199040767386091,
|
13 |
+
"grad_norm": 25.642412537629156,
|
14 |
+
"learning_rate": 1.99203187250996e-09,
|
15 |
+
"logits/chosen": -2.515625,
|
16 |
+
"logits/rejected": -2.4375,
|
17 |
+
"logps/chosen": -260.0,
|
18 |
+
"logps/rejected": -251.0,
|
19 |
+
"loss": 0.6914,
|
20 |
+
"rewards/accuracies": 0.0,
|
21 |
+
"rewards/chosen": 0.0,
|
22 |
+
"rewards/margins": 0.0,
|
23 |
+
"rewards/rejected": 0.0,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.011990407673860911,
|
28 |
+
"grad_norm": 24.290562967872415,
|
29 |
+
"learning_rate": 1.99203187250996e-08,
|
30 |
+
"logits/chosen": -2.390625,
|
31 |
+
"logits/rejected": -2.421875,
|
32 |
+
"logps/chosen": -217.0,
|
33 |
+
"logps/rejected": -210.0,
|
34 |
+
"loss": 0.6933,
|
35 |
+
"rewards/accuracies": 0.2361111044883728,
|
36 |
+
"rewards/chosen": 0.0242919921875,
|
37 |
+
"rewards/margins": 0.009033203125,
|
38 |
+
"rewards/rejected": 0.01531982421875,
|
39 |
+
"step": 10
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.023980815347721823,
|
43 |
+
"grad_norm": 24.03209890621009,
|
44 |
+
"learning_rate": 3.98406374501992e-08,
|
45 |
+
"logits/chosen": -2.359375,
|
46 |
+
"logits/rejected": -2.390625,
|
47 |
+
"logps/chosen": -216.0,
|
48 |
+
"logps/rejected": -207.0,
|
49 |
+
"loss": 0.6914,
|
50 |
+
"rewards/accuracies": 0.3125,
|
51 |
+
"rewards/chosen": 0.0224609375,
|
52 |
+
"rewards/margins": 0.015625,
|
53 |
+
"rewards/rejected": 0.006866455078125,
|
54 |
+
"step": 20
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.03597122302158273,
|
58 |
+
"grad_norm": 24.100678886411075,
|
59 |
+
"learning_rate": 5.97609561752988e-08,
|
60 |
+
"logits/chosen": -2.421875,
|
61 |
+
"logits/rejected": -2.40625,
|
62 |
+
"logps/chosen": -188.0,
|
63 |
+
"logps/rejected": -200.0,
|
64 |
+
"loss": 0.697,
|
65 |
+
"rewards/accuracies": 0.23749999701976776,
|
66 |
+
"rewards/chosen": 0.0081787109375,
|
67 |
+
"rewards/margins": -0.0087890625,
|
68 |
+
"rewards/rejected": 0.016845703125,
|
69 |
+
"step": 30
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.047961630695443645,
|
73 |
+
"grad_norm": 22.19662351600711,
|
74 |
+
"learning_rate": 7.96812749003984e-08,
|
75 |
+
"logits/chosen": -2.375,
|
76 |
+
"logits/rejected": -2.375,
|
77 |
+
"logps/chosen": -205.0,
|
78 |
+
"logps/rejected": -192.0,
|
79 |
+
"loss": 0.6921,
|
80 |
+
"rewards/accuracies": 0.2750000059604645,
|
81 |
+
"rewards/chosen": 0.0081787109375,
|
82 |
+
"rewards/margins": 0.0018768310546875,
|
83 |
+
"rewards/rejected": 0.006256103515625,
|
84 |
+
"step": 40
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.05995203836930456,
|
88 |
+
"grad_norm": 22.91225992894245,
|
89 |
+
"learning_rate": 9.9601593625498e-08,
|
90 |
+
"logits/chosen": -2.4375,
|
91 |
+
"logits/rejected": -2.453125,
|
92 |
+
"logps/chosen": -217.0,
|
93 |
+
"logps/rejected": -213.0,
|
94 |
+
"loss": 0.6927,
|
95 |
+
"rewards/accuracies": 0.23749999701976776,
|
96 |
+
"rewards/chosen": 0.0238037109375,
|
97 |
+
"rewards/margins": -0.0031280517578125,
|
98 |
+
"rewards/rejected": 0.02685546875,
|
99 |
+
"step": 50
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.07194244604316546,
|
103 |
+
"grad_norm": 22.915913925151774,
|
104 |
+
"learning_rate": 1.195219123505976e-07,
|
105 |
+
"logits/chosen": -2.375,
|
106 |
+
"logits/rejected": -2.40625,
|
107 |
+
"logps/chosen": -202.0,
|
108 |
+
"logps/rejected": -211.0,
|
109 |
+
"loss": 0.6965,
|
110 |
+
"rewards/accuracies": 0.16249999403953552,
|
111 |
+
"rewards/chosen": 0.0037384033203125,
|
112 |
+
"rewards/margins": -0.0037384033203125,
|
113 |
+
"rewards/rejected": 0.00750732421875,
|
114 |
+
"step": 60
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.08393285371702638,
|
118 |
+
"grad_norm": 24.635308516543407,
|
119 |
+
"learning_rate": 1.394422310756972e-07,
|
120 |
+
"logits/chosen": -2.390625,
|
121 |
+
"logits/rejected": -2.421875,
|
122 |
+
"logps/chosen": -214.0,
|
123 |
+
"logps/rejected": -204.0,
|
124 |
+
"loss": 0.693,
|
125 |
+
"rewards/accuracies": 0.20000000298023224,
|
126 |
+
"rewards/chosen": 0.01129150390625,
|
127 |
+
"rewards/margins": -0.0118408203125,
|
128 |
+
"rewards/rejected": 0.0230712890625,
|
129 |
+
"step": 70
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.09592326139088729,
|
133 |
+
"grad_norm": 23.422749201250696,
|
134 |
+
"learning_rate": 1.593625498007968e-07,
|
135 |
+
"logits/chosen": -2.421875,
|
136 |
+
"logits/rejected": -2.453125,
|
137 |
+
"logps/chosen": -211.0,
|
138 |
+
"logps/rejected": -224.0,
|
139 |
+
"loss": 0.6932,
|
140 |
+
"rewards/accuracies": 0.17499999701976776,
|
141 |
+
"rewards/chosen": 0.01251220703125,
|
142 |
+
"rewards/margins": -0.006256103515625,
|
143 |
+
"rewards/rejected": 0.018798828125,
|
144 |
+
"step": 80
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 0.1079136690647482,
|
148 |
+
"grad_norm": 25.550050248970773,
|
149 |
+
"learning_rate": 1.7928286852589642e-07,
|
150 |
+
"logits/chosen": -2.359375,
|
151 |
+
"logits/rejected": -2.390625,
|
152 |
+
"logps/chosen": -230.0,
|
153 |
+
"logps/rejected": -223.0,
|
154 |
+
"loss": 0.6919,
|
155 |
+
"rewards/accuracies": 0.21250000596046448,
|
156 |
+
"rewards/chosen": 0.0281982421875,
|
157 |
+
"rewards/margins": 0.001251220703125,
|
158 |
+
"rewards/rejected": 0.0269775390625,
|
159 |
+
"step": 90
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.11990407673860912,
|
163 |
+
"grad_norm": 25.761780120884907,
|
164 |
+
"learning_rate": 1.99203187250996e-07,
|
165 |
+
"logits/chosen": -2.375,
|
166 |
+
"logits/rejected": -2.453125,
|
167 |
+
"logps/chosen": -194.0,
|
168 |
+
"logps/rejected": -208.0,
|
169 |
+
"loss": 0.6914,
|
170 |
+
"rewards/accuracies": 0.26249998807907104,
|
171 |
+
"rewards/chosen": 0.010009765625,
|
172 |
+
"rewards/margins": -0.00250244140625,
|
173 |
+
"rewards/rejected": 0.0125732421875,
|
174 |
+
"step": 100
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 0.13189448441247004,
|
178 |
+
"grad_norm": 22.84334462455036,
|
179 |
+
"learning_rate": 2.191235059760956e-07,
|
180 |
+
"logits/chosen": -2.453125,
|
181 |
+
"logits/rejected": -2.46875,
|
182 |
+
"logps/chosen": -202.0,
|
183 |
+
"logps/rejected": -218.0,
|
184 |
+
"loss": 0.687,
|
185 |
+
"rewards/accuracies": 0.2874999940395355,
|
186 |
+
"rewards/chosen": 0.021240234375,
|
187 |
+
"rewards/margins": 0.0050048828125,
|
188 |
+
"rewards/rejected": 0.016357421875,
|
189 |
+
"step": 110
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.14388489208633093,
|
193 |
+
"grad_norm": 24.300426924539867,
|
194 |
+
"learning_rate": 2.390438247011952e-07,
|
195 |
+
"logits/chosen": -2.390625,
|
196 |
+
"logits/rejected": -2.375,
|
197 |
+
"logps/chosen": -207.0,
|
198 |
+
"logps/rejected": -189.0,
|
199 |
+
"loss": 0.6896,
|
200 |
+
"rewards/accuracies": 0.26249998807907104,
|
201 |
+
"rewards/chosen": 0.006256103515625,
|
202 |
+
"rewards/margins": 0.0106201171875,
|
203 |
+
"rewards/rejected": -0.004425048828125,
|
204 |
+
"step": 120
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 0.15587529976019185,
|
208 |
+
"grad_norm": 25.941365174437085,
|
209 |
+
"learning_rate": 2.589641434262948e-07,
|
210 |
+
"logits/chosen": -2.40625,
|
211 |
+
"logits/rejected": -2.375,
|
212 |
+
"logps/chosen": -212.0,
|
213 |
+
"logps/rejected": -204.0,
|
214 |
+
"loss": 0.6807,
|
215 |
+
"rewards/accuracies": 0.38749998807907104,
|
216 |
+
"rewards/chosen": 0.036376953125,
|
217 |
+
"rewards/margins": 0.0194091796875,
|
218 |
+
"rewards/rejected": 0.016845703125,
|
219 |
+
"step": 130
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.16786570743405277,
|
223 |
+
"grad_norm": 22.46827042788133,
|
224 |
+
"learning_rate": 2.788844621513944e-07,
|
225 |
+
"logits/chosen": -2.40625,
|
226 |
+
"logits/rejected": -2.46875,
|
227 |
+
"logps/chosen": -216.0,
|
228 |
+
"logps/rejected": -208.0,
|
229 |
+
"loss": 0.6813,
|
230 |
+
"rewards/accuracies": 0.375,
|
231 |
+
"rewards/chosen": 0.0281982421875,
|
232 |
+
"rewards/margins": 0.016845703125,
|
233 |
+
"rewards/rejected": 0.01129150390625,
|
234 |
+
"step": 140
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.17985611510791366,
|
238 |
+
"grad_norm": 22.828346012492343,
|
239 |
+
"learning_rate": 2.98804780876494e-07,
|
240 |
+
"logits/chosen": -2.40625,
|
241 |
+
"logits/rejected": -2.40625,
|
242 |
+
"logps/chosen": -214.0,
|
243 |
+
"logps/rejected": -217.0,
|
244 |
+
"loss": 0.6788,
|
245 |
+
"rewards/accuracies": 0.4000000059604645,
|
246 |
+
"rewards/chosen": 0.03759765625,
|
247 |
+
"rewards/margins": 0.0238037109375,
|
248 |
+
"rewards/rejected": 0.01373291015625,
|
249 |
+
"step": 150
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.19184652278177458,
|
253 |
+
"grad_norm": 25.091544876831573,
|
254 |
+
"learning_rate": 3.187250996015936e-07,
|
255 |
+
"logits/chosen": -2.359375,
|
256 |
+
"logits/rejected": -2.40625,
|
257 |
+
"logps/chosen": -206.0,
|
258 |
+
"logps/rejected": -215.0,
|
259 |
+
"loss": 0.6829,
|
260 |
+
"rewards/accuracies": 0.44999998807907104,
|
261 |
+
"rewards/chosen": 0.056396484375,
|
262 |
+
"rewards/margins": 0.0400390625,
|
263 |
+
"rewards/rejected": 0.0162353515625,
|
264 |
+
"step": 160
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 0.2038369304556355,
|
268 |
+
"grad_norm": 22.476144325987256,
|
269 |
+
"learning_rate": 3.386454183266932e-07,
|
270 |
+
"logits/chosen": -2.421875,
|
271 |
+
"logits/rejected": -2.421875,
|
272 |
+
"logps/chosen": -222.0,
|
273 |
+
"logps/rejected": -220.0,
|
274 |
+
"loss": 0.6707,
|
275 |
+
"rewards/accuracies": 0.5625,
|
276 |
+
"rewards/chosen": 0.0576171875,
|
277 |
+
"rewards/margins": 0.07275390625,
|
278 |
+
"rewards/rejected": -0.0150146484375,
|
279 |
+
"step": 170
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.2158273381294964,
|
283 |
+
"grad_norm": 22.738418341833743,
|
284 |
+
"learning_rate": 3.5856573705179284e-07,
|
285 |
+
"logits/chosen": -2.375,
|
286 |
+
"logits/rejected": -2.40625,
|
287 |
+
"logps/chosen": -211.0,
|
288 |
+
"logps/rejected": -214.0,
|
289 |
+
"loss": 0.6701,
|
290 |
+
"rewards/accuracies": 0.4749999940395355,
|
291 |
+
"rewards/chosen": 0.06640625,
|
292 |
+
"rewards/margins": 0.05322265625,
|
293 |
+
"rewards/rejected": 0.01318359375,
|
294 |
+
"step": 180
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 0.2278177458033573,
|
298 |
+
"grad_norm": 22.162554634157406,
|
299 |
+
"learning_rate": 3.784860557768924e-07,
|
300 |
+
"logits/chosen": -2.359375,
|
301 |
+
"logits/rejected": -2.4375,
|
302 |
+
"logps/chosen": -200.0,
|
303 |
+
"logps/rejected": -188.0,
|
304 |
+
"loss": 0.6715,
|
305 |
+
"rewards/accuracies": 0.5874999761581421,
|
306 |
+
"rewards/chosen": 0.08203125,
|
307 |
+
"rewards/margins": 0.0654296875,
|
308 |
+
"rewards/rejected": 0.0162353515625,
|
309 |
+
"step": 190
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.23980815347721823,
|
313 |
+
"grad_norm": 24.649798845932942,
|
314 |
+
"learning_rate": 3.98406374501992e-07,
|
315 |
+
"logits/chosen": -2.375,
|
316 |
+
"logits/rejected": -2.375,
|
317 |
+
"logps/chosen": -212.0,
|
318 |
+
"logps/rejected": -207.0,
|
319 |
+
"loss": 0.6712,
|
320 |
+
"rewards/accuracies": 0.48750001192092896,
|
321 |
+
"rewards/chosen": 0.033203125,
|
322 |
+
"rewards/margins": 0.050048828125,
|
323 |
+
"rewards/rejected": -0.016845703125,
|
324 |
+
"step": 200
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.2517985611510791,
|
328 |
+
"grad_norm": 19.334172790085294,
|
329 |
+
"learning_rate": 4.1832669322709163e-07,
|
330 |
+
"logits/chosen": -2.375,
|
331 |
+
"logits/rejected": -2.453125,
|
332 |
+
"logps/chosen": -205.0,
|
333 |
+
"logps/rejected": -213.0,
|
334 |
+
"loss": 0.6612,
|
335 |
+
"rewards/accuracies": 0.512499988079071,
|
336 |
+
"rewards/chosen": 0.048828125,
|
337 |
+
"rewards/margins": 0.07275390625,
|
338 |
+
"rewards/rejected": -0.0238037109375,
|
339 |
+
"step": 210
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.2637889688249401,
|
343 |
+
"grad_norm": 20.773278941923554,
|
344 |
+
"learning_rate": 4.382470119521912e-07,
|
345 |
+
"logits/chosen": -2.359375,
|
346 |
+
"logits/rejected": -2.390625,
|
347 |
+
"logps/chosen": -217.0,
|
348 |
+
"logps/rejected": -210.0,
|
349 |
+
"loss": 0.6522,
|
350 |
+
"rewards/accuracies": 0.5249999761581421,
|
351 |
+
"rewards/chosen": -0.0162353515625,
|
352 |
+
"rewards/margins": 0.08251953125,
|
353 |
+
"rewards/rejected": -0.0986328125,
|
354 |
+
"step": 220
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 0.27577937649880097,
|
358 |
+
"grad_norm": 23.13141722026618,
|
359 |
+
"learning_rate": 4.581673306772908e-07,
|
360 |
+
"logits/chosen": -2.40625,
|
361 |
+
"logits/rejected": -2.390625,
|
362 |
+
"logps/chosen": -207.0,
|
363 |
+
"logps/rejected": -210.0,
|
364 |
+
"loss": 0.641,
|
365 |
+
"rewards/accuracies": 0.6875,
|
366 |
+
"rewards/chosen": -0.050048828125,
|
367 |
+
"rewards/margins": 0.1259765625,
|
368 |
+
"rewards/rejected": -0.1767578125,
|
369 |
+
"step": 230
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.28776978417266186,
|
373 |
+
"grad_norm": 25.417525122060646,
|
374 |
+
"learning_rate": 4.780876494023904e-07,
|
375 |
+
"logits/chosen": -2.328125,
|
376 |
+
"logits/rejected": -2.328125,
|
377 |
+
"logps/chosen": -220.0,
|
378 |
+
"logps/rejected": -205.0,
|
379 |
+
"loss": 0.6402,
|
380 |
+
"rewards/accuracies": 0.6499999761581421,
|
381 |
+
"rewards/chosen": -0.06201171875,
|
382 |
+
"rewards/margins": 0.154296875,
|
383 |
+
"rewards/rejected": -0.2158203125,
|
384 |
+
"step": 240
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 0.2997601918465228,
|
388 |
+
"grad_norm": 22.97557618510118,
|
389 |
+
"learning_rate": 4.9800796812749e-07,
|
390 |
+
"logits/chosen": -2.34375,
|
391 |
+
"logits/rejected": -2.34375,
|
392 |
+
"logps/chosen": -196.0,
|
393 |
+
"logps/rejected": -205.0,
|
394 |
+
"loss": 0.6303,
|
395 |
+
"rewards/accuracies": 0.612500011920929,
|
396 |
+
"rewards/chosen": -0.251953125,
|
397 |
+
"rewards/margins": 0.1259765625,
|
398 |
+
"rewards/rejected": -0.37890625,
|
399 |
+
"step": 250
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 0.3117505995203837,
|
403 |
+
"grad_norm": 22.380902540882072,
|
404 |
+
"learning_rate": 4.980008884940026e-07,
|
405 |
+
"logits/chosen": -2.359375,
|
406 |
+
"logits/rejected": -2.359375,
|
407 |
+
"logps/chosen": -206.0,
|
408 |
+
"logps/rejected": -206.0,
|
409 |
+
"loss": 0.6271,
|
410 |
+
"rewards/accuracies": 0.6625000238418579,
|
411 |
+
"rewards/chosen": -0.203125,
|
412 |
+
"rewards/margins": 0.224609375,
|
413 |
+
"rewards/rejected": -0.427734375,
|
414 |
+
"step": 260
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 0.3237410071942446,
|
418 |
+
"grad_norm": 20.410713037919127,
|
419 |
+
"learning_rate": 4.957796534873389e-07,
|
420 |
+
"logits/chosen": -2.375,
|
421 |
+
"logits/rejected": -2.421875,
|
422 |
+
"logps/chosen": -211.0,
|
423 |
+
"logps/rejected": -206.0,
|
424 |
+
"loss": 0.6168,
|
425 |
+
"rewards/accuracies": 0.699999988079071,
|
426 |
+
"rewards/chosen": -0.462890625,
|
427 |
+
"rewards/margins": 0.234375,
|
428 |
+
"rewards/rejected": -0.69921875,
|
429 |
+
"step": 270
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.33573141486810554,
|
433 |
+
"grad_norm": 19.858477875493026,
|
434 |
+
"learning_rate": 4.935584184806753e-07,
|
435 |
+
"logits/chosen": -2.390625,
|
436 |
+
"logits/rejected": -2.375,
|
437 |
+
"logps/chosen": -213.0,
|
438 |
+
"logps/rejected": -216.0,
|
439 |
+
"loss": 0.5864,
|
440 |
+
"rewards/accuracies": 0.6875,
|
441 |
+
"rewards/chosen": -0.8046875,
|
442 |
+
"rewards/margins": 0.310546875,
|
443 |
+
"rewards/rejected": -1.109375,
|
444 |
+
"step": 280
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 0.34772182254196643,
|
448 |
+
"grad_norm": 25.75186279410947,
|
449 |
+
"learning_rate": 4.913371834740116e-07,
|
450 |
+
"logits/chosen": -2.390625,
|
451 |
+
"logits/rejected": -2.390625,
|
452 |
+
"logps/chosen": -213.0,
|
453 |
+
"logps/rejected": -219.0,
|
454 |
+
"loss": 0.6046,
|
455 |
+
"rewards/accuracies": 0.5874999761581421,
|
456 |
+
"rewards/chosen": -1.015625,
|
457 |
+
"rewards/margins": 0.3046875,
|
458 |
+
"rewards/rejected": -1.328125,
|
459 |
+
"step": 290
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.3597122302158273,
|
463 |
+
"grad_norm": 20.582004189162635,
|
464 |
+
"learning_rate": 4.891159484673478e-07,
|
465 |
+
"logits/chosen": -2.34375,
|
466 |
+
"logits/rejected": -2.359375,
|
467 |
+
"logps/chosen": -219.0,
|
468 |
+
"logps/rejected": -223.0,
|
469 |
+
"loss": 0.6033,
|
470 |
+
"rewards/accuracies": 0.625,
|
471 |
+
"rewards/chosen": -0.66796875,
|
472 |
+
"rewards/margins": 0.26171875,
|
473 |
+
"rewards/rejected": -0.9296875,
|
474 |
+
"step": 300
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 0.37170263788968827,
|
478 |
+
"grad_norm": 17.87508243629168,
|
479 |
+
"learning_rate": 4.868947134606841e-07,
|
480 |
+
"logits/chosen": -2.359375,
|
481 |
+
"logits/rejected": -2.421875,
|
482 |
+
"logps/chosen": -219.0,
|
483 |
+
"logps/rejected": -233.0,
|
484 |
+
"loss": 0.5365,
|
485 |
+
"rewards/accuracies": 0.737500011920929,
|
486 |
+
"rewards/chosen": -0.87890625,
|
487 |
+
"rewards/margins": 0.6171875,
|
488 |
+
"rewards/rejected": -1.4921875,
|
489 |
+
"step": 310
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 0.38369304556354916,
|
493 |
+
"grad_norm": 22.10087172308854,
|
494 |
+
"learning_rate": 4.846734784540204e-07,
|
495 |
+
"logits/chosen": -2.375,
|
496 |
+
"logits/rejected": -2.4375,
|
497 |
+
"logps/chosen": -231.0,
|
498 |
+
"logps/rejected": -238.0,
|
499 |
+
"loss": 0.5703,
|
500 |
+
"rewards/accuracies": 0.625,
|
501 |
+
"rewards/chosen": -0.8125,
|
502 |
+
"rewards/margins": 0.43359375,
|
503 |
+
"rewards/rejected": -1.25,
|
504 |
+
"step": 320
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 0.39568345323741005,
|
508 |
+
"grad_norm": 27.704111990126563,
|
509 |
+
"learning_rate": 4.824522434473567e-07,
|
510 |
+
"logits/chosen": -2.421875,
|
511 |
+
"logits/rejected": -2.421875,
|
512 |
+
"logps/chosen": -235.0,
|
513 |
+
"logps/rejected": -235.0,
|
514 |
+
"loss": 0.543,
|
515 |
+
"rewards/accuracies": 0.675000011920929,
|
516 |
+
"rewards/chosen": -1.15625,
|
517 |
+
"rewards/margins": 0.490234375,
|
518 |
+
"rewards/rejected": -1.6484375,
|
519 |
+
"step": 330
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 0.407673860911271,
|
523 |
+
"grad_norm": 19.609485654347775,
|
524 |
+
"learning_rate": 4.80231008440693e-07,
|
525 |
+
"logits/chosen": -2.40625,
|
526 |
+
"logits/rejected": -2.421875,
|
527 |
+
"logps/chosen": -223.0,
|
528 |
+
"logps/rejected": -228.0,
|
529 |
+
"loss": 0.5288,
|
530 |
+
"rewards/accuracies": 0.75,
|
531 |
+
"rewards/chosen": -0.8046875,
|
532 |
+
"rewards/margins": 0.61328125,
|
533 |
+
"rewards/rejected": -1.4140625,
|
534 |
+
"step": 340
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.4196642685851319,
|
538 |
+
"grad_norm": 25.341062357182967,
|
539 |
+
"learning_rate": 4.780097734340293e-07,
|
540 |
+
"logits/chosen": -2.375,
|
541 |
+
"logits/rejected": -2.3125,
|
542 |
+
"logps/chosen": -219.0,
|
543 |
+
"logps/rejected": -229.0,
|
544 |
+
"loss": 0.5653,
|
545 |
+
"rewards/accuracies": 0.699999988079071,
|
546 |
+
"rewards/chosen": -0.8515625,
|
547 |
+
"rewards/margins": 0.546875,
|
548 |
+
"rewards/rejected": -1.3984375,
|
549 |
+
"step": 350
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.4316546762589928,
|
553 |
+
"grad_norm": 24.609756364283665,
|
554 |
+
"learning_rate": 4.757885384273656e-07,
|
555 |
+
"logits/chosen": -2.421875,
|
556 |
+
"logits/rejected": -2.40625,
|
557 |
+
"logps/chosen": -213.0,
|
558 |
+
"logps/rejected": -226.0,
|
559 |
+
"loss": 0.5599,
|
560 |
+
"rewards/accuracies": 0.6499999761581421,
|
561 |
+
"rewards/chosen": -0.70703125,
|
562 |
+
"rewards/margins": 0.453125,
|
563 |
+
"rewards/rejected": -1.15625,
|
564 |
+
"step": 360
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 0.44364508393285373,
|
568 |
+
"grad_norm": 20.448105072112956,
|
569 |
+
"learning_rate": 4.7356730342070187e-07,
|
570 |
+
"logits/chosen": -2.34375,
|
571 |
+
"logits/rejected": -2.40625,
|
572 |
+
"logps/chosen": -226.0,
|
573 |
+
"logps/rejected": -231.0,
|
574 |
+
"loss": 0.5373,
|
575 |
+
"rewards/accuracies": 0.7250000238418579,
|
576 |
+
"rewards/chosen": -1.171875,
|
577 |
+
"rewards/margins": 0.58984375,
|
578 |
+
"rewards/rejected": -1.7578125,
|
579 |
+
"step": 370
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 0.4556354916067146,
|
583 |
+
"grad_norm": 20.00137526211279,
|
584 |
+
"learning_rate": 4.713460684140382e-07,
|
585 |
+
"logits/chosen": -2.390625,
|
586 |
+
"logits/rejected": -2.359375,
|
587 |
+
"logps/chosen": -225.0,
|
588 |
+
"logps/rejected": -228.0,
|
589 |
+
"loss": 0.5482,
|
590 |
+
"rewards/accuracies": 0.737500011920929,
|
591 |
+
"rewards/chosen": -1.4609375,
|
592 |
+
"rewards/margins": 0.474609375,
|
593 |
+
"rewards/rejected": -1.9375,
|
594 |
+
"step": 380
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 0.4676258992805755,
|
598 |
+
"grad_norm": 20.08046772545977,
|
599 |
+
"learning_rate": 4.691248334073745e-07,
|
600 |
+
"logits/chosen": -2.3125,
|
601 |
+
"logits/rejected": -2.375,
|
602 |
+
"logps/chosen": -222.0,
|
603 |
+
"logps/rejected": -232.0,
|
604 |
+
"loss": 0.5292,
|
605 |
+
"rewards/accuracies": 0.699999988079071,
|
606 |
+
"rewards/chosen": -1.4453125,
|
607 |
+
"rewards/margins": 0.4609375,
|
608 |
+
"rewards/rejected": -1.90625,
|
609 |
+
"step": 390
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 0.47961630695443647,
|
613 |
+
"grad_norm": 24.656493214054557,
|
614 |
+
"learning_rate": 4.6690359840071075e-07,
|
615 |
+
"logits/chosen": -2.34375,
|
616 |
+
"logits/rejected": -2.296875,
|
617 |
+
"logps/chosen": -203.0,
|
618 |
+
"logps/rejected": -220.0,
|
619 |
+
"loss": 0.4912,
|
620 |
+
"rewards/accuracies": 0.7875000238418579,
|
621 |
+
"rewards/chosen": -0.72265625,
|
622 |
+
"rewards/margins": 0.69140625,
|
623 |
+
"rewards/rejected": -1.4140625,
|
624 |
+
"step": 400
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 0.49160671462829736,
|
628 |
+
"grad_norm": 20.967973696578976,
|
629 |
+
"learning_rate": 4.646823633940471e-07,
|
630 |
+
"logits/chosen": -2.359375,
|
631 |
+
"logits/rejected": -2.453125,
|
632 |
+
"logps/chosen": -220.0,
|
633 |
+
"logps/rejected": -229.0,
|
634 |
+
"loss": 0.5305,
|
635 |
+
"rewards/accuracies": 0.699999988079071,
|
636 |
+
"rewards/chosen": -0.74609375,
|
637 |
+
"rewards/margins": 0.58203125,
|
638 |
+
"rewards/rejected": -1.328125,
|
639 |
+
"step": 410
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.5035971223021583,
|
643 |
+
"grad_norm": 25.657618682397636,
|
644 |
+
"learning_rate": 4.6246112838738336e-07,
|
645 |
+
"logits/chosen": -2.328125,
|
646 |
+
"logits/rejected": -2.328125,
|
647 |
+
"logps/chosen": -217.0,
|
648 |
+
"logps/rejected": -217.0,
|
649 |
+
"loss": 0.5173,
|
650 |
+
"rewards/accuracies": 0.7124999761581421,
|
651 |
+
"rewards/chosen": -1.7109375,
|
652 |
+
"rewards/margins": 0.625,
|
653 |
+
"rewards/rejected": -2.328125,
|
654 |
+
"step": 420
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 0.5155875299760192,
|
658 |
+
"grad_norm": 22.796145877614705,
|
659 |
+
"learning_rate": 4.602398933807197e-07,
|
660 |
+
"logits/chosen": -2.3125,
|
661 |
+
"logits/rejected": -2.421875,
|
662 |
+
"logps/chosen": -221.0,
|
663 |
+
"logps/rejected": -254.0,
|
664 |
+
"loss": 0.5249,
|
665 |
+
"rewards/accuracies": 0.6625000238418579,
|
666 |
+
"rewards/chosen": -1.1015625,
|
667 |
+
"rewards/margins": 0.419921875,
|
668 |
+
"rewards/rejected": -1.5234375,
|
669 |
+
"step": 430
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 0.5275779376498801,
|
673 |
+
"grad_norm": 21.830523584389546,
|
674 |
+
"learning_rate": 4.5801865837405597e-07,
|
675 |
+
"logits/chosen": -2.3125,
|
676 |
+
"logits/rejected": -2.296875,
|
677 |
+
"logps/chosen": -231.0,
|
678 |
+
"logps/rejected": -234.0,
|
679 |
+
"loss": 0.4868,
|
680 |
+
"rewards/accuracies": 0.75,
|
681 |
+
"rewards/chosen": -0.97265625,
|
682 |
+
"rewards/margins": 0.75,
|
683 |
+
"rewards/rejected": -1.7265625,
|
684 |
+
"step": 440
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 0.539568345323741,
|
688 |
+
"grad_norm": 22.863177511462844,
|
689 |
+
"learning_rate": 4.5579742336739224e-07,
|
690 |
+
"logits/chosen": -2.375,
|
691 |
+
"logits/rejected": -2.3125,
|
692 |
+
"logps/chosen": -217.0,
|
693 |
+
"logps/rejected": -206.0,
|
694 |
+
"loss": 0.5349,
|
695 |
+
"rewards/accuracies": 0.800000011920929,
|
696 |
+
"rewards/chosen": -0.51953125,
|
697 |
+
"rewards/margins": 0.79296875,
|
698 |
+
"rewards/rejected": -1.3125,
|
699 |
+
"step": 450
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 0.5515587529976019,
|
703 |
+
"grad_norm": 22.106098891434247,
|
704 |
+
"learning_rate": 4.535761883607285e-07,
|
705 |
+
"logits/chosen": -2.34375,
|
706 |
+
"logits/rejected": -2.34375,
|
707 |
+
"logps/chosen": -242.0,
|
708 |
+
"logps/rejected": -229.0,
|
709 |
+
"loss": 0.4969,
|
710 |
+
"rewards/accuracies": 0.6625000238418579,
|
711 |
+
"rewards/chosen": -1.0078125,
|
712 |
+
"rewards/margins": 0.5234375,
|
713 |
+
"rewards/rejected": -1.53125,
|
714 |
+
"step": 460
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 0.5635491606714629,
|
718 |
+
"grad_norm": 21.83764765940895,
|
719 |
+
"learning_rate": 4.513549533540648e-07,
|
720 |
+
"logits/chosen": -2.34375,
|
721 |
+
"logits/rejected": -2.40625,
|
722 |
+
"logps/chosen": -221.0,
|
723 |
+
"logps/rejected": -229.0,
|
724 |
+
"loss": 0.4531,
|
725 |
+
"rewards/accuracies": 0.8125,
|
726 |
+
"rewards/chosen": -0.9609375,
|
727 |
+
"rewards/margins": 0.75390625,
|
728 |
+
"rewards/rejected": -1.7109375,
|
729 |
+
"step": 470
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 0.5755395683453237,
|
733 |
+
"grad_norm": 27.75012920313157,
|
734 |
+
"learning_rate": 4.491337183474012e-07,
|
735 |
+
"logits/chosen": -2.34375,
|
736 |
+
"logits/rejected": -2.328125,
|
737 |
+
"logps/chosen": -227.0,
|
738 |
+
"logps/rejected": -221.0,
|
739 |
+
"loss": 0.5074,
|
740 |
+
"rewards/accuracies": 0.7250000238418579,
|
741 |
+
"rewards/chosen": -1.234375,
|
742 |
+
"rewards/margins": 0.625,
|
743 |
+
"rewards/rejected": -1.8515625,
|
744 |
+
"step": 480
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.5875299760191847,
|
748 |
+
"grad_norm": 17.36030484793641,
|
749 |
+
"learning_rate": 4.4691248334073746e-07,
|
750 |
+
"logits/chosen": -2.359375,
|
751 |
+
"logits/rejected": -2.390625,
|
752 |
+
"logps/chosen": -225.0,
|
753 |
+
"logps/rejected": -239.0,
|
754 |
+
"loss": 0.48,
|
755 |
+
"rewards/accuracies": 0.737500011920929,
|
756 |
+
"rewards/chosen": -1.375,
|
757 |
+
"rewards/margins": 0.73828125,
|
758 |
+
"rewards/rejected": -2.109375,
|
759 |
+
"step": 490
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 0.5995203836930456,
|
763 |
+
"grad_norm": 22.808492833261823,
|
764 |
+
"learning_rate": 4.4469124833407373e-07,
|
765 |
+
"logits/chosen": -2.328125,
|
766 |
+
"logits/rejected": -2.328125,
|
767 |
+
"logps/chosen": -214.0,
|
768 |
+
"logps/rejected": -214.0,
|
769 |
+
"loss": 0.5236,
|
770 |
+
"rewards/accuracies": 0.6625000238418579,
|
771 |
+
"rewards/chosen": -1.3984375,
|
772 |
+
"rewards/margins": 0.443359375,
|
773 |
+
"rewards/rejected": -1.84375,
|
774 |
+
"step": 500
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 0.6115107913669064,
|
778 |
+
"grad_norm": 23.84926176790092,
|
779 |
+
"learning_rate": 4.4247001332741e-07,
|
780 |
+
"logits/chosen": -2.3125,
|
781 |
+
"logits/rejected": -2.375,
|
782 |
+
"logps/chosen": -215.0,
|
783 |
+
"logps/rejected": -235.0,
|
784 |
+
"loss": 0.4798,
|
785 |
+
"rewards/accuracies": 0.699999988079071,
|
786 |
+
"rewards/chosen": -0.96484375,
|
787 |
+
"rewards/margins": 0.76953125,
|
788 |
+
"rewards/rejected": -1.734375,
|
789 |
+
"step": 510
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 0.6235011990407674,
|
793 |
+
"grad_norm": 21.734949611768823,
|
794 |
+
"learning_rate": 4.402487783207463e-07,
|
795 |
+
"logits/chosen": -2.359375,
|
796 |
+
"logits/rejected": -2.375,
|
797 |
+
"logps/chosen": -215.0,
|
798 |
+
"logps/rejected": -238.0,
|
799 |
+
"loss": 0.437,
|
800 |
+
"rewards/accuracies": 0.8125,
|
801 |
+
"rewards/chosen": -1.0546875,
|
802 |
+
"rewards/margins": 0.9921875,
|
803 |
+
"rewards/rejected": -2.046875,
|
804 |
+
"step": 520
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 0.6354916067146283,
|
808 |
+
"grad_norm": 17.985205119836653,
|
809 |
+
"learning_rate": 4.380275433140826e-07,
|
810 |
+
"logits/chosen": -2.390625,
|
811 |
+
"logits/rejected": -2.453125,
|
812 |
+
"logps/chosen": -216.0,
|
813 |
+
"logps/rejected": -229.0,
|
814 |
+
"loss": 0.4438,
|
815 |
+
"rewards/accuracies": 0.824999988079071,
|
816 |
+
"rewards/chosen": -1.0703125,
|
817 |
+
"rewards/margins": 1.0625,
|
818 |
+
"rewards/rejected": -2.125,
|
819 |
+
"step": 530
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 0.6474820143884892,
|
823 |
+
"grad_norm": 19.26308613682953,
|
824 |
+
"learning_rate": 4.358063083074189e-07,
|
825 |
+
"logits/chosen": -2.34375,
|
826 |
+
"logits/rejected": -2.359375,
|
827 |
+
"logps/chosen": -230.0,
|
828 |
+
"logps/rejected": -244.0,
|
829 |
+
"loss": 0.4505,
|
830 |
+
"rewards/accuracies": 0.862500011920929,
|
831 |
+
"rewards/chosen": -1.5,
|
832 |
+
"rewards/margins": 1.234375,
|
833 |
+
"rewards/rejected": -2.734375,
|
834 |
+
"step": 540
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"epoch": 0.6594724220623501,
|
838 |
+
"grad_norm": 24.596146010502707,
|
839 |
+
"learning_rate": 4.335850733007552e-07,
|
840 |
+
"logits/chosen": -2.328125,
|
841 |
+
"logits/rejected": -2.359375,
|
842 |
+
"logps/chosen": -221.0,
|
843 |
+
"logps/rejected": -233.0,
|
844 |
+
"loss": 0.4943,
|
845 |
+
"rewards/accuracies": 0.75,
|
846 |
+
"rewards/chosen": -1.6796875,
|
847 |
+
"rewards/margins": 0.7421875,
|
848 |
+
"rewards/rejected": -2.421875,
|
849 |
+
"step": 550
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.6714628297362111,
|
853 |
+
"grad_norm": 15.013286046936686,
|
854 |
+
"learning_rate": 4.313638382940915e-07,
|
855 |
+
"logits/chosen": -2.3125,
|
856 |
+
"logits/rejected": -2.359375,
|
857 |
+
"logps/chosen": -217.0,
|
858 |
+
"logps/rejected": -236.0,
|
859 |
+
"loss": 0.4661,
|
860 |
+
"rewards/accuracies": 0.8374999761581421,
|
861 |
+
"rewards/chosen": -0.9921875,
|
862 |
+
"rewards/margins": 0.984375,
|
863 |
+
"rewards/rejected": -1.9765625,
|
864 |
+
"step": 560
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"epoch": 0.6834532374100719,
|
868 |
+
"grad_norm": 19.571343970012546,
|
869 |
+
"learning_rate": 4.291426032874278e-07,
|
870 |
+
"logits/chosen": -2.28125,
|
871 |
+
"logits/rejected": -2.34375,
|
872 |
+
"logps/chosen": -218.0,
|
873 |
+
"logps/rejected": -258.0,
|
874 |
+
"loss": 0.43,
|
875 |
+
"rewards/accuracies": 0.800000011920929,
|
876 |
+
"rewards/chosen": -1.2265625,
|
877 |
+
"rewards/margins": 1.03125,
|
878 |
+
"rewards/rejected": -2.25,
|
879 |
+
"step": 570
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 0.6954436450839329,
|
883 |
+
"grad_norm": 20.377379214041834,
|
884 |
+
"learning_rate": 4.269213682807641e-07,
|
885 |
+
"logits/chosen": -2.34375,
|
886 |
+
"logits/rejected": -2.328125,
|
887 |
+
"logps/chosen": -227.0,
|
888 |
+
"logps/rejected": -221.0,
|
889 |
+
"loss": 0.4403,
|
890 |
+
"rewards/accuracies": 0.762499988079071,
|
891 |
+
"rewards/chosen": -0.83984375,
|
892 |
+
"rewards/margins": 0.9375,
|
893 |
+
"rewards/rejected": -1.7734375,
|
894 |
+
"step": 580
|
895 |
+
},
|
896 |
+
{
|
897 |
+
"epoch": 0.7074340527577938,
|
898 |
+
"grad_norm": 25.88308379473588,
|
899 |
+
"learning_rate": 4.247001332741004e-07,
|
900 |
+
"logits/chosen": -2.328125,
|
901 |
+
"logits/rejected": -2.40625,
|
902 |
+
"logps/chosen": -219.0,
|
903 |
+
"logps/rejected": -239.0,
|
904 |
+
"loss": 0.4357,
|
905 |
+
"rewards/accuracies": 0.8374999761581421,
|
906 |
+
"rewards/chosen": -0.78515625,
|
907 |
+
"rewards/margins": 1.0703125,
|
908 |
+
"rewards/rejected": -1.8515625,
|
909 |
+
"step": 590
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 0.7194244604316546,
|
913 |
+
"grad_norm": 21.223402057931814,
|
914 |
+
"learning_rate": 4.2247889826743666e-07,
|
915 |
+
"logits/chosen": -2.3125,
|
916 |
+
"logits/rejected": -2.34375,
|
917 |
+
"logps/chosen": -227.0,
|
918 |
+
"logps/rejected": -232.0,
|
919 |
+
"loss": 0.4865,
|
920 |
+
"rewards/accuracies": 0.7875000238418579,
|
921 |
+
"rewards/chosen": -0.8515625,
|
922 |
+
"rewards/margins": 0.8125,
|
923 |
+
"rewards/rejected": -1.6640625,
|
924 |
+
"step": 600
|
925 |
+
},
|
926 |
+
{
|
927 |
+
"epoch": 0.7314148681055156,
|
928 |
+
"grad_norm": 26.413684307486818,
|
929 |
+
"learning_rate": 4.2025766326077294e-07,
|
930 |
+
"logits/chosen": -2.3125,
|
931 |
+
"logits/rejected": -2.375,
|
932 |
+
"logps/chosen": -222.0,
|
933 |
+
"logps/rejected": -231.0,
|
934 |
+
"loss": 0.4473,
|
935 |
+
"rewards/accuracies": 0.75,
|
936 |
+
"rewards/chosen": -1.453125,
|
937 |
+
"rewards/margins": 0.984375,
|
938 |
+
"rewards/rejected": -2.4375,
|
939 |
+
"step": 610
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 0.7434052757793765,
|
943 |
+
"grad_norm": 19.274016165683612,
|
944 |
+
"learning_rate": 4.1803642825410926e-07,
|
945 |
+
"logits/chosen": -2.25,
|
946 |
+
"logits/rejected": -2.296875,
|
947 |
+
"logps/chosen": -218.0,
|
948 |
+
"logps/rejected": -241.0,
|
949 |
+
"loss": 0.4574,
|
950 |
+
"rewards/accuracies": 0.800000011920929,
|
951 |
+
"rewards/chosen": -1.2734375,
|
952 |
+
"rewards/margins": 0.94140625,
|
953 |
+
"rewards/rejected": -2.21875,
|
954 |
+
"step": 620
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.7553956834532374,
|
958 |
+
"grad_norm": 21.962129244766075,
|
959 |
+
"learning_rate": 4.158151932474456e-07,
|
960 |
+
"logits/chosen": -2.328125,
|
961 |
+
"logits/rejected": -2.421875,
|
962 |
+
"logps/chosen": -236.0,
|
963 |
+
"logps/rejected": -234.0,
|
964 |
+
"loss": 0.4202,
|
965 |
+
"rewards/accuracies": 0.8125,
|
966 |
+
"rewards/chosen": -1.546875,
|
967 |
+
"rewards/margins": 1.09375,
|
968 |
+
"rewards/rejected": -2.640625,
|
969 |
+
"step": 630
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 0.7673860911270983,
|
973 |
+
"grad_norm": 19.250420656857816,
|
974 |
+
"learning_rate": 4.1359395824078187e-07,
|
975 |
+
"logits/chosen": -2.328125,
|
976 |
+
"logits/rejected": -2.328125,
|
977 |
+
"logps/chosen": -231.0,
|
978 |
+
"logps/rejected": -256.0,
|
979 |
+
"loss": 0.423,
|
980 |
+
"rewards/accuracies": 0.824999988079071,
|
981 |
+
"rewards/chosen": -2.109375,
|
982 |
+
"rewards/margins": 1.1640625,
|
983 |
+
"rewards/rejected": -3.28125,
|
984 |
+
"step": 640
|
985 |
+
},
|
986 |
+
{
|
987 |
+
"epoch": 0.7793764988009593,
|
988 |
+
"grad_norm": 17.26038839326138,
|
989 |
+
"learning_rate": 4.1137272323411815e-07,
|
990 |
+
"logits/chosen": -2.296875,
|
991 |
+
"logits/rejected": -2.3125,
|
992 |
+
"logps/chosen": -223.0,
|
993 |
+
"logps/rejected": -245.0,
|
994 |
+
"loss": 0.4144,
|
995 |
+
"rewards/accuracies": 0.7875000238418579,
|
996 |
+
"rewards/chosen": -2.140625,
|
997 |
+
"rewards/margins": 1.140625,
|
998 |
+
"rewards/rejected": -3.28125,
|
999 |
+
"step": 650
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 0.7913669064748201,
|
1003 |
+
"grad_norm": 22.725812386482403,
|
1004 |
+
"learning_rate": 4.091514882274544e-07,
|
1005 |
+
"logits/chosen": -2.328125,
|
1006 |
+
"logits/rejected": -2.34375,
|
1007 |
+
"logps/chosen": -224.0,
|
1008 |
+
"logps/rejected": -223.0,
|
1009 |
+
"loss": 0.4619,
|
1010 |
+
"rewards/accuracies": 0.8125,
|
1011 |
+
"rewards/chosen": -1.6328125,
|
1012 |
+
"rewards/margins": 0.75,
|
1013 |
+
"rewards/rejected": -2.390625,
|
1014 |
+
"step": 660
|
1015 |
+
},
|
1016 |
+
{
|
1017 |
+
"epoch": 0.8033573141486811,
|
1018 |
+
"grad_norm": 26.346880341026353,
|
1019 |
+
"learning_rate": 4.069302532207907e-07,
|
1020 |
+
"logits/chosen": -2.34375,
|
1021 |
+
"logits/rejected": -2.34375,
|
1022 |
+
"logps/chosen": -234.0,
|
1023 |
+
"logps/rejected": -233.0,
|
1024 |
+
"loss": 0.4198,
|
1025 |
+
"rewards/accuracies": 0.800000011920929,
|
1026 |
+
"rewards/chosen": -1.09375,
|
1027 |
+
"rewards/margins": 1.2109375,
|
1028 |
+
"rewards/rejected": -2.296875,
|
1029 |
+
"step": 670
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"epoch": 0.815347721822542,
|
1033 |
+
"grad_norm": 16.341325440490397,
|
1034 |
+
"learning_rate": 4.047090182141271e-07,
|
1035 |
+
"logits/chosen": -2.375,
|
1036 |
+
"logits/rejected": -2.328125,
|
1037 |
+
"logps/chosen": -219.0,
|
1038 |
+
"logps/rejected": -237.0,
|
1039 |
+
"loss": 0.4215,
|
1040 |
+
"rewards/accuracies": 0.800000011920929,
|
1041 |
+
"rewards/chosen": -1.828125,
|
1042 |
+
"rewards/margins": 0.8359375,
|
1043 |
+
"rewards/rejected": -2.65625,
|
1044 |
+
"step": 680
|
1045 |
+
},
|
1046 |
+
{
|
1047 |
+
"epoch": 0.8273381294964028,
|
1048 |
+
"grad_norm": 19.597918931735652,
|
1049 |
+
"learning_rate": 4.0248778320746336e-07,
|
1050 |
+
"logits/chosen": -2.34375,
|
1051 |
+
"logits/rejected": -2.421875,
|
1052 |
+
"logps/chosen": -225.0,
|
1053 |
+
"logps/rejected": -246.0,
|
1054 |
+
"loss": 0.4179,
|
1055 |
+
"rewards/accuracies": 0.762499988079071,
|
1056 |
+
"rewards/chosen": -1.6640625,
|
1057 |
+
"rewards/margins": 1.046875,
|
1058 |
+
"rewards/rejected": -2.71875,
|
1059 |
+
"step": 690
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.8393285371702638,
|
1063 |
+
"grad_norm": 16.19010210226658,
|
1064 |
+
"learning_rate": 4.0026654820079964e-07,
|
1065 |
+
"logits/chosen": -2.296875,
|
1066 |
+
"logits/rejected": -2.296875,
|
1067 |
+
"logps/chosen": -242.0,
|
1068 |
+
"logps/rejected": -253.0,
|
1069 |
+
"loss": 0.4064,
|
1070 |
+
"rewards/accuracies": 0.862500011920929,
|
1071 |
+
"rewards/chosen": -1.6875,
|
1072 |
+
"rewards/margins": 1.1875,
|
1073 |
+
"rewards/rejected": -2.875,
|
1074 |
+
"step": 700
|
1075 |
+
},
|
1076 |
+
{
|
1077 |
+
"epoch": 0.8513189448441247,
|
1078 |
+
"grad_norm": 19.378154801231126,
|
1079 |
+
"learning_rate": 3.980453131941359e-07,
|
1080 |
+
"logits/chosen": -2.3125,
|
1081 |
+
"logits/rejected": -2.3125,
|
1082 |
+
"logps/chosen": -230.0,
|
1083 |
+
"logps/rejected": -243.0,
|
1084 |
+
"loss": 0.382,
|
1085 |
+
"rewards/accuracies": 0.7749999761581421,
|
1086 |
+
"rewards/chosen": -1.703125,
|
1087 |
+
"rewards/margins": 1.234375,
|
1088 |
+
"rewards/rejected": -2.9375,
|
1089 |
+
"step": 710
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 0.8633093525179856,
|
1093 |
+
"grad_norm": 17.875697953531226,
|
1094 |
+
"learning_rate": 3.958240781874722e-07,
|
1095 |
+
"logits/chosen": -2.265625,
|
1096 |
+
"logits/rejected": -2.3125,
|
1097 |
+
"logps/chosen": -230.0,
|
1098 |
+
"logps/rejected": -231.0,
|
1099 |
+
"loss": 0.3839,
|
1100 |
+
"rewards/accuracies": 0.8999999761581421,
|
1101 |
+
"rewards/chosen": -1.6171875,
|
1102 |
+
"rewards/margins": 1.28125,
|
1103 |
+
"rewards/rejected": -2.90625,
|
1104 |
+
"step": 720
|
1105 |
+
},
|
1106 |
+
{
|
1107 |
+
"epoch": 0.8752997601918465,
|
1108 |
+
"grad_norm": 21.20250450740525,
|
1109 |
+
"learning_rate": 3.936028431808085e-07,
|
1110 |
+
"logits/chosen": -2.390625,
|
1111 |
+
"logits/rejected": -2.34375,
|
1112 |
+
"logps/chosen": -231.0,
|
1113 |
+
"logps/rejected": -231.0,
|
1114 |
+
"loss": 0.3574,
|
1115 |
+
"rewards/accuracies": 0.887499988079071,
|
1116 |
+
"rewards/chosen": -1.609375,
|
1117 |
+
"rewards/margins": 1.421875,
|
1118 |
+
"rewards/rejected": -3.03125,
|
1119 |
+
"step": 730
|
1120 |
+
},
|
1121 |
+
{
|
1122 |
+
"epoch": 0.8872901678657075,
|
1123 |
+
"grad_norm": 17.46000299554747,
|
1124 |
+
"learning_rate": 3.913816081741448e-07,
|
1125 |
+
"logits/chosen": -2.328125,
|
1126 |
+
"logits/rejected": -2.359375,
|
1127 |
+
"logps/chosen": -216.0,
|
1128 |
+
"logps/rejected": -237.0,
|
1129 |
+
"loss": 0.3473,
|
1130 |
+
"rewards/accuracies": 0.8999999761581421,
|
1131 |
+
"rewards/chosen": -1.703125,
|
1132 |
+
"rewards/margins": 1.625,
|
1133 |
+
"rewards/rejected": -3.328125,
|
1134 |
+
"step": 740
|
1135 |
+
},
|
1136 |
+
{
|
1137 |
+
"epoch": 0.8992805755395683,
|
1138 |
+
"grad_norm": 17.53738029583566,
|
1139 |
+
"learning_rate": 3.8916037316748113e-07,
|
1140 |
+
"logits/chosen": -2.296875,
|
1141 |
+
"logits/rejected": -2.28125,
|
1142 |
+
"logps/chosen": -222.0,
|
1143 |
+
"logps/rejected": -232.0,
|
1144 |
+
"loss": 0.371,
|
1145 |
+
"rewards/accuracies": 0.8374999761581421,
|
1146 |
+
"rewards/chosen": -2.09375,
|
1147 |
+
"rewards/margins": 1.2421875,
|
1148 |
+
"rewards/rejected": -3.328125,
|
1149 |
+
"step": 750
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"epoch": 0.9112709832134293,
|
1153 |
+
"grad_norm": 13.845287693810857,
|
1154 |
+
"learning_rate": 3.869391381608174e-07,
|
1155 |
+
"logits/chosen": -2.3125,
|
1156 |
+
"logits/rejected": -2.359375,
|
1157 |
+
"logps/chosen": -227.0,
|
1158 |
+
"logps/rejected": -239.0,
|
1159 |
+
"loss": 0.3346,
|
1160 |
+
"rewards/accuracies": 0.925000011920929,
|
1161 |
+
"rewards/chosen": -1.359375,
|
1162 |
+
"rewards/margins": 1.28125,
|
1163 |
+
"rewards/rejected": -2.640625,
|
1164 |
+
"step": 760
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 0.9232613908872902,
|
1168 |
+
"grad_norm": 18.53800658699909,
|
1169 |
+
"learning_rate": 3.847179031541537e-07,
|
1170 |
+
"logits/chosen": -2.265625,
|
1171 |
+
"logits/rejected": -2.328125,
|
1172 |
+
"logps/chosen": -225.0,
|
1173 |
+
"logps/rejected": -227.0,
|
1174 |
+
"loss": 0.3642,
|
1175 |
+
"rewards/accuracies": 0.8500000238418579,
|
1176 |
+
"rewards/chosen": -1.671875,
|
1177 |
+
"rewards/margins": 1.3125,
|
1178 |
+
"rewards/rejected": -2.984375,
|
1179 |
+
"step": 770
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 0.935251798561151,
|
1183 |
+
"grad_norm": 21.872485752073064,
|
1184 |
+
"learning_rate": 3.8249666814749e-07,
|
1185 |
+
"logits/chosen": -2.3125,
|
1186 |
+
"logits/rejected": -2.3125,
|
1187 |
+
"logps/chosen": -240.0,
|
1188 |
+
"logps/rejected": -237.0,
|
1189 |
+
"loss": 0.3391,
|
1190 |
+
"rewards/accuracies": 0.8999999761581421,
|
1191 |
+
"rewards/chosen": -2.015625,
|
1192 |
+
"rewards/margins": 1.5078125,
|
1193 |
+
"rewards/rejected": -3.53125,
|
1194 |
+
"step": 780
|
1195 |
+
},
|
1196 |
+
{
|
1197 |
+
"epoch": 0.947242206235012,
|
1198 |
+
"grad_norm": 21.111212041972365,
|
1199 |
+
"learning_rate": 3.802754331408263e-07,
|
1200 |
+
"logits/chosen": -2.28125,
|
1201 |
+
"logits/rejected": -2.296875,
|
1202 |
+
"logps/chosen": -232.0,
|
1203 |
+
"logps/rejected": -256.0,
|
1204 |
+
"loss": 0.3679,
|
1205 |
+
"rewards/accuracies": 0.7875000238418579,
|
1206 |
+
"rewards/chosen": -2.296875,
|
1207 |
+
"rewards/margins": 1.3203125,
|
1208 |
+
"rewards/rejected": -3.625,
|
1209 |
+
"step": 790
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 0.9592326139088729,
|
1213 |
+
"grad_norm": 21.61033072214478,
|
1214 |
+
"learning_rate": 3.7805419813416256e-07,
|
1215 |
+
"logits/chosen": -2.28125,
|
1216 |
+
"logits/rejected": -2.265625,
|
1217 |
+
"logps/chosen": -226.0,
|
1218 |
+
"logps/rejected": -241.0,
|
1219 |
+
"loss": 0.3427,
|
1220 |
+
"rewards/accuracies": 0.8999999761581421,
|
1221 |
+
"rewards/chosen": -2.5625,
|
1222 |
+
"rewards/margins": 1.4140625,
|
1223 |
+
"rewards/rejected": -3.96875,
|
1224 |
+
"step": 800
|
1225 |
+
},
|
1226 |
+
{
|
1227 |
+
"epoch": 0.9712230215827338,
|
1228 |
+
"grad_norm": 15.32449671679388,
|
1229 |
+
"learning_rate": 3.7583296312749884e-07,
|
1230 |
+
"logits/chosen": -2.234375,
|
1231 |
+
"logits/rejected": -2.28125,
|
1232 |
+
"logps/chosen": -234.0,
|
1233 |
+
"logps/rejected": -252.0,
|
1234 |
+
"loss": 0.3787,
|
1235 |
+
"rewards/accuracies": 0.824999988079071,
|
1236 |
+
"rewards/chosen": -2.71875,
|
1237 |
+
"rewards/margins": 1.53125,
|
1238 |
+
"rewards/rejected": -4.25,
|
1239 |
+
"step": 810
|
1240 |
+
},
|
1241 |
+
{
|
1242 |
+
"epoch": 0.9832134292565947,
|
1243 |
+
"grad_norm": 19.67405128244237,
|
1244 |
+
"learning_rate": 3.7361172812083517e-07,
|
1245 |
+
"logits/chosen": -2.34375,
|
1246 |
+
"logits/rejected": -2.28125,
|
1247 |
+
"logps/chosen": -230.0,
|
1248 |
+
"logps/rejected": -232.0,
|
1249 |
+
"loss": 0.3254,
|
1250 |
+
"rewards/accuracies": 0.9125000238418579,
|
1251 |
+
"rewards/chosen": -1.9453125,
|
1252 |
+
"rewards/margins": 1.46875,
|
1253 |
+
"rewards/rejected": -3.421875,
|
1254 |
+
"step": 820
|
1255 |
+
},
|
1256 |
+
{
|
1257 |
+
"epoch": 0.9952038369304557,
|
1258 |
+
"grad_norm": 21.005105323056593,
|
1259 |
+
"learning_rate": 3.713904931141715e-07,
|
1260 |
+
"logits/chosen": -2.296875,
|
1261 |
+
"logits/rejected": -2.28125,
|
1262 |
+
"logps/chosen": -237.0,
|
1263 |
+
"logps/rejected": -239.0,
|
1264 |
+
"loss": 0.2971,
|
1265 |
+
"rewards/accuracies": 0.8999999761581421,
|
1266 |
+
"rewards/chosen": -1.5234375,
|
1267 |
+
"rewards/margins": 1.6328125,
|
1268 |
+
"rewards/rejected": -3.15625,
|
1269 |
+
"step": 830
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 1.0,
|
1273 |
+
"eval_logits/chosen": -2.296875,
|
1274 |
+
"eval_logits/rejected": -2.328125,
|
1275 |
+
"eval_logps/chosen": -228.0,
|
1276 |
+
"eval_logps/rejected": -236.0,
|
1277 |
+
"eval_loss": 0.6048940420150757,
|
1278 |
+
"eval_rewards/accuracies": 0.6617646813392639,
|
1279 |
+
"eval_rewards/chosen": -1.9921875,
|
1280 |
+
"eval_rewards/margins": 0.93359375,
|
1281 |
+
"eval_rewards/rejected": -2.921875,
|
1282 |
+
"eval_runtime": 19.9965,
|
1283 |
+
"eval_samples_per_second": 20.053,
|
1284 |
+
"eval_steps_per_second": 0.85,
|
1285 |
+
"step": 834
|
1286 |
+
}
|
1287 |
+
],
|
1288 |
+
"logging_steps": 10,
|
1289 |
+
"max_steps": 2502,
|
1290 |
+
"num_input_tokens_seen": 0,
|
1291 |
+
"num_train_epochs": 3,
|
1292 |
+
"save_steps": 500,
|
1293 |
+
"stateful_callbacks": {
|
1294 |
+
"TrainerControl": {
|
1295 |
+
"args": {
|
1296 |
+
"should_epoch_stop": false,
|
1297 |
+
"should_evaluate": false,
|
1298 |
+
"should_log": false,
|
1299 |
+
"should_save": true,
|
1300 |
+
"should_training_stop": false
|
1301 |
+
},
|
1302 |
+
"attributes": {}
|
1303 |
+
}
|
1304 |
+
},
|
1305 |
+
"total_flos": 0.0,
|
1306 |
+
"train_batch_size": 8,
|
1307 |
+
"trial_name": null,
|
1308 |
+
"trial_params": null
|
1309 |
+
}
|
last-checkpoint/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:282276e8ca2c3bb39b9c69bbf3414c492b1692d30562f258099b171b931a0960
|
3 |
+
size 7800
|
last-checkpoint/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
last-checkpoint/zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|