AmberYifan commited on
Commit
8bfaef4
·
verified ·
1 Parent(s): 74b1418

Training in progress, epoch 1, checkpoint

Browse files
last-checkpoint/added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
last-checkpoint/config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "AmberYifan/Qwen2-7B-sft-ultrachat-safeRLHF",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151643,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 131072,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.46.3",
26
+ "use_cache": false,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 152064
29
+ }
last-checkpoint/generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "eos_token_id": 151643,
4
+ "max_new_tokens": 2048,
5
+ "transformers_version": "4.46.3"
6
+ }
last-checkpoint/global_step834/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:874554f120526282acd79c21d7c4ea6f34b1e39eda3eac4be4e7aa1811c62067
3
+ size 20308318462
last-checkpoint/global_step834/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28473bc66b4ae22df63745906ca120730a1444508f12e74f4cedee45849b1252
3
+ size 20308318462
last-checkpoint/global_step834/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6dded09dab9a7abac36bc78033557b49a943bcebe28f2cf9e59e6eca9b40044e
3
+ size 20308318462
last-checkpoint/global_step834/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4227380e9aa012e7180857009619d19fca3141953b35bcc650c05235cc823dc
3
+ size 168021
last-checkpoint/global_step834/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bda4c60ba2aed1e5c3df064d04070f06762ab42866984df87dfecf1923beac8c
3
+ size 168021
last-checkpoint/global_step834/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6a31aa0dd0ffac10d3f8b42cfdedce1761541fdafc650a3e029ad4fa625b860
3
+ size 168021
last-checkpoint/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step834
last-checkpoint/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
last-checkpoint/model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8190906700ee780cdf9acef8480699fc35cfb00ff01029df21b9e5f7ab53641
3
+ size 4877660776
last-checkpoint/model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4dffbd398d07477c8a7667bb9c64c4f99a093d5c0e9a83c85a03ce07e380dd4
3
+ size 4932751008
last-checkpoint/model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d648bd6bf235062ab5f0b53f51b22a7a298cc0a91a896c228d384daa7816b75
3
+ size 4330865200
last-checkpoint/model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8acd8efe43798b3349ea7b07aca8ae9990b114f09dbe94b99ce669e8d7debe0e
3
+ size 1089994880
last-checkpoint/model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00003-of-00004.safetensors"
345
+ }
346
+ }
last-checkpoint/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b580656286e8a6f334aced7bdb46499a54f3bb95644a0167405da037afbd894d
3
+ size 14768
last-checkpoint/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a763d1d109f11374f3725ac97283433a5c2264a51fd11d55a5af0441e79bbe2c
3
+ size 14768
last-checkpoint/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5685be549346816d411abdb06552706ef94ec9c1b6cb3302d99d90f37622b797
3
+ size 14768
last-checkpoint/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55febb44a9d245e649a9b6071529c6f084be4339b0c0578ab70892487be29366
3
+ size 1064
last-checkpoint/special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
last-checkpoint/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcfe42da0a4497e8b2b172c1f9f4ec423a46dc12907f4349c55025f670422ba9
3
+ size 11418266
last-checkpoint/tokenizer_config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "bos_token": null,
34
+ "chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "<|endoftext|>",
37
+ "errors": "replace",
38
+ "max_length": 1024,
39
+ "model_max_length": 32768,
40
+ "pad_token": "<|endoftext|>",
41
+ "split_special_tokens": false,
42
+ "stride": 0,
43
+ "tokenizer_class": "Qwen2Tokenizer",
44
+ "truncation_side": "left",
45
+ "truncation_strategy": "longest_first",
46
+ "unk_token": null
47
+ }
last-checkpoint/trainer_state.json ADDED
@@ -0,0 +1,1309 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 834,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.001199040767386091,
13
+ "grad_norm": 25.642412537629156,
14
+ "learning_rate": 1.99203187250996e-09,
15
+ "logits/chosen": -2.515625,
16
+ "logits/rejected": -2.4375,
17
+ "logps/chosen": -260.0,
18
+ "logps/rejected": -251.0,
19
+ "loss": 0.6914,
20
+ "rewards/accuracies": 0.0,
21
+ "rewards/chosen": 0.0,
22
+ "rewards/margins": 0.0,
23
+ "rewards/rejected": 0.0,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.011990407673860911,
28
+ "grad_norm": 24.290562967872415,
29
+ "learning_rate": 1.99203187250996e-08,
30
+ "logits/chosen": -2.390625,
31
+ "logits/rejected": -2.421875,
32
+ "logps/chosen": -217.0,
33
+ "logps/rejected": -210.0,
34
+ "loss": 0.6933,
35
+ "rewards/accuracies": 0.2361111044883728,
36
+ "rewards/chosen": 0.0242919921875,
37
+ "rewards/margins": 0.009033203125,
38
+ "rewards/rejected": 0.01531982421875,
39
+ "step": 10
40
+ },
41
+ {
42
+ "epoch": 0.023980815347721823,
43
+ "grad_norm": 24.03209890621009,
44
+ "learning_rate": 3.98406374501992e-08,
45
+ "logits/chosen": -2.359375,
46
+ "logits/rejected": -2.390625,
47
+ "logps/chosen": -216.0,
48
+ "logps/rejected": -207.0,
49
+ "loss": 0.6914,
50
+ "rewards/accuracies": 0.3125,
51
+ "rewards/chosen": 0.0224609375,
52
+ "rewards/margins": 0.015625,
53
+ "rewards/rejected": 0.006866455078125,
54
+ "step": 20
55
+ },
56
+ {
57
+ "epoch": 0.03597122302158273,
58
+ "grad_norm": 24.100678886411075,
59
+ "learning_rate": 5.97609561752988e-08,
60
+ "logits/chosen": -2.421875,
61
+ "logits/rejected": -2.40625,
62
+ "logps/chosen": -188.0,
63
+ "logps/rejected": -200.0,
64
+ "loss": 0.697,
65
+ "rewards/accuracies": 0.23749999701976776,
66
+ "rewards/chosen": 0.0081787109375,
67
+ "rewards/margins": -0.0087890625,
68
+ "rewards/rejected": 0.016845703125,
69
+ "step": 30
70
+ },
71
+ {
72
+ "epoch": 0.047961630695443645,
73
+ "grad_norm": 22.19662351600711,
74
+ "learning_rate": 7.96812749003984e-08,
75
+ "logits/chosen": -2.375,
76
+ "logits/rejected": -2.375,
77
+ "logps/chosen": -205.0,
78
+ "logps/rejected": -192.0,
79
+ "loss": 0.6921,
80
+ "rewards/accuracies": 0.2750000059604645,
81
+ "rewards/chosen": 0.0081787109375,
82
+ "rewards/margins": 0.0018768310546875,
83
+ "rewards/rejected": 0.006256103515625,
84
+ "step": 40
85
+ },
86
+ {
87
+ "epoch": 0.05995203836930456,
88
+ "grad_norm": 22.91225992894245,
89
+ "learning_rate": 9.9601593625498e-08,
90
+ "logits/chosen": -2.4375,
91
+ "logits/rejected": -2.453125,
92
+ "logps/chosen": -217.0,
93
+ "logps/rejected": -213.0,
94
+ "loss": 0.6927,
95
+ "rewards/accuracies": 0.23749999701976776,
96
+ "rewards/chosen": 0.0238037109375,
97
+ "rewards/margins": -0.0031280517578125,
98
+ "rewards/rejected": 0.02685546875,
99
+ "step": 50
100
+ },
101
+ {
102
+ "epoch": 0.07194244604316546,
103
+ "grad_norm": 22.915913925151774,
104
+ "learning_rate": 1.195219123505976e-07,
105
+ "logits/chosen": -2.375,
106
+ "logits/rejected": -2.40625,
107
+ "logps/chosen": -202.0,
108
+ "logps/rejected": -211.0,
109
+ "loss": 0.6965,
110
+ "rewards/accuracies": 0.16249999403953552,
111
+ "rewards/chosen": 0.0037384033203125,
112
+ "rewards/margins": -0.0037384033203125,
113
+ "rewards/rejected": 0.00750732421875,
114
+ "step": 60
115
+ },
116
+ {
117
+ "epoch": 0.08393285371702638,
118
+ "grad_norm": 24.635308516543407,
119
+ "learning_rate": 1.394422310756972e-07,
120
+ "logits/chosen": -2.390625,
121
+ "logits/rejected": -2.421875,
122
+ "logps/chosen": -214.0,
123
+ "logps/rejected": -204.0,
124
+ "loss": 0.693,
125
+ "rewards/accuracies": 0.20000000298023224,
126
+ "rewards/chosen": 0.01129150390625,
127
+ "rewards/margins": -0.0118408203125,
128
+ "rewards/rejected": 0.0230712890625,
129
+ "step": 70
130
+ },
131
+ {
132
+ "epoch": 0.09592326139088729,
133
+ "grad_norm": 23.422749201250696,
134
+ "learning_rate": 1.593625498007968e-07,
135
+ "logits/chosen": -2.421875,
136
+ "logits/rejected": -2.453125,
137
+ "logps/chosen": -211.0,
138
+ "logps/rejected": -224.0,
139
+ "loss": 0.6932,
140
+ "rewards/accuracies": 0.17499999701976776,
141
+ "rewards/chosen": 0.01251220703125,
142
+ "rewards/margins": -0.006256103515625,
143
+ "rewards/rejected": 0.018798828125,
144
+ "step": 80
145
+ },
146
+ {
147
+ "epoch": 0.1079136690647482,
148
+ "grad_norm": 25.550050248970773,
149
+ "learning_rate": 1.7928286852589642e-07,
150
+ "logits/chosen": -2.359375,
151
+ "logits/rejected": -2.390625,
152
+ "logps/chosen": -230.0,
153
+ "logps/rejected": -223.0,
154
+ "loss": 0.6919,
155
+ "rewards/accuracies": 0.21250000596046448,
156
+ "rewards/chosen": 0.0281982421875,
157
+ "rewards/margins": 0.001251220703125,
158
+ "rewards/rejected": 0.0269775390625,
159
+ "step": 90
160
+ },
161
+ {
162
+ "epoch": 0.11990407673860912,
163
+ "grad_norm": 25.761780120884907,
164
+ "learning_rate": 1.99203187250996e-07,
165
+ "logits/chosen": -2.375,
166
+ "logits/rejected": -2.453125,
167
+ "logps/chosen": -194.0,
168
+ "logps/rejected": -208.0,
169
+ "loss": 0.6914,
170
+ "rewards/accuracies": 0.26249998807907104,
171
+ "rewards/chosen": 0.010009765625,
172
+ "rewards/margins": -0.00250244140625,
173
+ "rewards/rejected": 0.0125732421875,
174
+ "step": 100
175
+ },
176
+ {
177
+ "epoch": 0.13189448441247004,
178
+ "grad_norm": 22.84334462455036,
179
+ "learning_rate": 2.191235059760956e-07,
180
+ "logits/chosen": -2.453125,
181
+ "logits/rejected": -2.46875,
182
+ "logps/chosen": -202.0,
183
+ "logps/rejected": -218.0,
184
+ "loss": 0.687,
185
+ "rewards/accuracies": 0.2874999940395355,
186
+ "rewards/chosen": 0.021240234375,
187
+ "rewards/margins": 0.0050048828125,
188
+ "rewards/rejected": 0.016357421875,
189
+ "step": 110
190
+ },
191
+ {
192
+ "epoch": 0.14388489208633093,
193
+ "grad_norm": 24.300426924539867,
194
+ "learning_rate": 2.390438247011952e-07,
195
+ "logits/chosen": -2.390625,
196
+ "logits/rejected": -2.375,
197
+ "logps/chosen": -207.0,
198
+ "logps/rejected": -189.0,
199
+ "loss": 0.6896,
200
+ "rewards/accuracies": 0.26249998807907104,
201
+ "rewards/chosen": 0.006256103515625,
202
+ "rewards/margins": 0.0106201171875,
203
+ "rewards/rejected": -0.004425048828125,
204
+ "step": 120
205
+ },
206
+ {
207
+ "epoch": 0.15587529976019185,
208
+ "grad_norm": 25.941365174437085,
209
+ "learning_rate": 2.589641434262948e-07,
210
+ "logits/chosen": -2.40625,
211
+ "logits/rejected": -2.375,
212
+ "logps/chosen": -212.0,
213
+ "logps/rejected": -204.0,
214
+ "loss": 0.6807,
215
+ "rewards/accuracies": 0.38749998807907104,
216
+ "rewards/chosen": 0.036376953125,
217
+ "rewards/margins": 0.0194091796875,
218
+ "rewards/rejected": 0.016845703125,
219
+ "step": 130
220
+ },
221
+ {
222
+ "epoch": 0.16786570743405277,
223
+ "grad_norm": 22.46827042788133,
224
+ "learning_rate": 2.788844621513944e-07,
225
+ "logits/chosen": -2.40625,
226
+ "logits/rejected": -2.46875,
227
+ "logps/chosen": -216.0,
228
+ "logps/rejected": -208.0,
229
+ "loss": 0.6813,
230
+ "rewards/accuracies": 0.375,
231
+ "rewards/chosen": 0.0281982421875,
232
+ "rewards/margins": 0.016845703125,
233
+ "rewards/rejected": 0.01129150390625,
234
+ "step": 140
235
+ },
236
+ {
237
+ "epoch": 0.17985611510791366,
238
+ "grad_norm": 22.828346012492343,
239
+ "learning_rate": 2.98804780876494e-07,
240
+ "logits/chosen": -2.40625,
241
+ "logits/rejected": -2.40625,
242
+ "logps/chosen": -214.0,
243
+ "logps/rejected": -217.0,
244
+ "loss": 0.6788,
245
+ "rewards/accuracies": 0.4000000059604645,
246
+ "rewards/chosen": 0.03759765625,
247
+ "rewards/margins": 0.0238037109375,
248
+ "rewards/rejected": 0.01373291015625,
249
+ "step": 150
250
+ },
251
+ {
252
+ "epoch": 0.19184652278177458,
253
+ "grad_norm": 25.091544876831573,
254
+ "learning_rate": 3.187250996015936e-07,
255
+ "logits/chosen": -2.359375,
256
+ "logits/rejected": -2.40625,
257
+ "logps/chosen": -206.0,
258
+ "logps/rejected": -215.0,
259
+ "loss": 0.6829,
260
+ "rewards/accuracies": 0.44999998807907104,
261
+ "rewards/chosen": 0.056396484375,
262
+ "rewards/margins": 0.0400390625,
263
+ "rewards/rejected": 0.0162353515625,
264
+ "step": 160
265
+ },
266
+ {
267
+ "epoch": 0.2038369304556355,
268
+ "grad_norm": 22.476144325987256,
269
+ "learning_rate": 3.386454183266932e-07,
270
+ "logits/chosen": -2.421875,
271
+ "logits/rejected": -2.421875,
272
+ "logps/chosen": -222.0,
273
+ "logps/rejected": -220.0,
274
+ "loss": 0.6707,
275
+ "rewards/accuracies": 0.5625,
276
+ "rewards/chosen": 0.0576171875,
277
+ "rewards/margins": 0.07275390625,
278
+ "rewards/rejected": -0.0150146484375,
279
+ "step": 170
280
+ },
281
+ {
282
+ "epoch": 0.2158273381294964,
283
+ "grad_norm": 22.738418341833743,
284
+ "learning_rate": 3.5856573705179284e-07,
285
+ "logits/chosen": -2.375,
286
+ "logits/rejected": -2.40625,
287
+ "logps/chosen": -211.0,
288
+ "logps/rejected": -214.0,
289
+ "loss": 0.6701,
290
+ "rewards/accuracies": 0.4749999940395355,
291
+ "rewards/chosen": 0.06640625,
292
+ "rewards/margins": 0.05322265625,
293
+ "rewards/rejected": 0.01318359375,
294
+ "step": 180
295
+ },
296
+ {
297
+ "epoch": 0.2278177458033573,
298
+ "grad_norm": 22.162554634157406,
299
+ "learning_rate": 3.784860557768924e-07,
300
+ "logits/chosen": -2.359375,
301
+ "logits/rejected": -2.4375,
302
+ "logps/chosen": -200.0,
303
+ "logps/rejected": -188.0,
304
+ "loss": 0.6715,
305
+ "rewards/accuracies": 0.5874999761581421,
306
+ "rewards/chosen": 0.08203125,
307
+ "rewards/margins": 0.0654296875,
308
+ "rewards/rejected": 0.0162353515625,
309
+ "step": 190
310
+ },
311
+ {
312
+ "epoch": 0.23980815347721823,
313
+ "grad_norm": 24.649798845932942,
314
+ "learning_rate": 3.98406374501992e-07,
315
+ "logits/chosen": -2.375,
316
+ "logits/rejected": -2.375,
317
+ "logps/chosen": -212.0,
318
+ "logps/rejected": -207.0,
319
+ "loss": 0.6712,
320
+ "rewards/accuracies": 0.48750001192092896,
321
+ "rewards/chosen": 0.033203125,
322
+ "rewards/margins": 0.050048828125,
323
+ "rewards/rejected": -0.016845703125,
324
+ "step": 200
325
+ },
326
+ {
327
+ "epoch": 0.2517985611510791,
328
+ "grad_norm": 19.334172790085294,
329
+ "learning_rate": 4.1832669322709163e-07,
330
+ "logits/chosen": -2.375,
331
+ "logits/rejected": -2.453125,
332
+ "logps/chosen": -205.0,
333
+ "logps/rejected": -213.0,
334
+ "loss": 0.6612,
335
+ "rewards/accuracies": 0.512499988079071,
336
+ "rewards/chosen": 0.048828125,
337
+ "rewards/margins": 0.07275390625,
338
+ "rewards/rejected": -0.0238037109375,
339
+ "step": 210
340
+ },
341
+ {
342
+ "epoch": 0.2637889688249401,
343
+ "grad_norm": 20.773278941923554,
344
+ "learning_rate": 4.382470119521912e-07,
345
+ "logits/chosen": -2.359375,
346
+ "logits/rejected": -2.390625,
347
+ "logps/chosen": -217.0,
348
+ "logps/rejected": -210.0,
349
+ "loss": 0.6522,
350
+ "rewards/accuracies": 0.5249999761581421,
351
+ "rewards/chosen": -0.0162353515625,
352
+ "rewards/margins": 0.08251953125,
353
+ "rewards/rejected": -0.0986328125,
354
+ "step": 220
355
+ },
356
+ {
357
+ "epoch": 0.27577937649880097,
358
+ "grad_norm": 23.13141722026618,
359
+ "learning_rate": 4.581673306772908e-07,
360
+ "logits/chosen": -2.40625,
361
+ "logits/rejected": -2.390625,
362
+ "logps/chosen": -207.0,
363
+ "logps/rejected": -210.0,
364
+ "loss": 0.641,
365
+ "rewards/accuracies": 0.6875,
366
+ "rewards/chosen": -0.050048828125,
367
+ "rewards/margins": 0.1259765625,
368
+ "rewards/rejected": -0.1767578125,
369
+ "step": 230
370
+ },
371
+ {
372
+ "epoch": 0.28776978417266186,
373
+ "grad_norm": 25.417525122060646,
374
+ "learning_rate": 4.780876494023904e-07,
375
+ "logits/chosen": -2.328125,
376
+ "logits/rejected": -2.328125,
377
+ "logps/chosen": -220.0,
378
+ "logps/rejected": -205.0,
379
+ "loss": 0.6402,
380
+ "rewards/accuracies": 0.6499999761581421,
381
+ "rewards/chosen": -0.06201171875,
382
+ "rewards/margins": 0.154296875,
383
+ "rewards/rejected": -0.2158203125,
384
+ "step": 240
385
+ },
386
+ {
387
+ "epoch": 0.2997601918465228,
388
+ "grad_norm": 22.97557618510118,
389
+ "learning_rate": 4.9800796812749e-07,
390
+ "logits/chosen": -2.34375,
391
+ "logits/rejected": -2.34375,
392
+ "logps/chosen": -196.0,
393
+ "logps/rejected": -205.0,
394
+ "loss": 0.6303,
395
+ "rewards/accuracies": 0.612500011920929,
396
+ "rewards/chosen": -0.251953125,
397
+ "rewards/margins": 0.1259765625,
398
+ "rewards/rejected": -0.37890625,
399
+ "step": 250
400
+ },
401
+ {
402
+ "epoch": 0.3117505995203837,
403
+ "grad_norm": 22.380902540882072,
404
+ "learning_rate": 4.980008884940026e-07,
405
+ "logits/chosen": -2.359375,
406
+ "logits/rejected": -2.359375,
407
+ "logps/chosen": -206.0,
408
+ "logps/rejected": -206.0,
409
+ "loss": 0.6271,
410
+ "rewards/accuracies": 0.6625000238418579,
411
+ "rewards/chosen": -0.203125,
412
+ "rewards/margins": 0.224609375,
413
+ "rewards/rejected": -0.427734375,
414
+ "step": 260
415
+ },
416
+ {
417
+ "epoch": 0.3237410071942446,
418
+ "grad_norm": 20.410713037919127,
419
+ "learning_rate": 4.957796534873389e-07,
420
+ "logits/chosen": -2.375,
421
+ "logits/rejected": -2.421875,
422
+ "logps/chosen": -211.0,
423
+ "logps/rejected": -206.0,
424
+ "loss": 0.6168,
425
+ "rewards/accuracies": 0.699999988079071,
426
+ "rewards/chosen": -0.462890625,
427
+ "rewards/margins": 0.234375,
428
+ "rewards/rejected": -0.69921875,
429
+ "step": 270
430
+ },
431
+ {
432
+ "epoch": 0.33573141486810554,
433
+ "grad_norm": 19.858477875493026,
434
+ "learning_rate": 4.935584184806753e-07,
435
+ "logits/chosen": -2.390625,
436
+ "logits/rejected": -2.375,
437
+ "logps/chosen": -213.0,
438
+ "logps/rejected": -216.0,
439
+ "loss": 0.5864,
440
+ "rewards/accuracies": 0.6875,
441
+ "rewards/chosen": -0.8046875,
442
+ "rewards/margins": 0.310546875,
443
+ "rewards/rejected": -1.109375,
444
+ "step": 280
445
+ },
446
+ {
447
+ "epoch": 0.34772182254196643,
448
+ "grad_norm": 25.75186279410947,
449
+ "learning_rate": 4.913371834740116e-07,
450
+ "logits/chosen": -2.390625,
451
+ "logits/rejected": -2.390625,
452
+ "logps/chosen": -213.0,
453
+ "logps/rejected": -219.0,
454
+ "loss": 0.6046,
455
+ "rewards/accuracies": 0.5874999761581421,
456
+ "rewards/chosen": -1.015625,
457
+ "rewards/margins": 0.3046875,
458
+ "rewards/rejected": -1.328125,
459
+ "step": 290
460
+ },
461
+ {
462
+ "epoch": 0.3597122302158273,
463
+ "grad_norm": 20.582004189162635,
464
+ "learning_rate": 4.891159484673478e-07,
465
+ "logits/chosen": -2.34375,
466
+ "logits/rejected": -2.359375,
467
+ "logps/chosen": -219.0,
468
+ "logps/rejected": -223.0,
469
+ "loss": 0.6033,
470
+ "rewards/accuracies": 0.625,
471
+ "rewards/chosen": -0.66796875,
472
+ "rewards/margins": 0.26171875,
473
+ "rewards/rejected": -0.9296875,
474
+ "step": 300
475
+ },
476
+ {
477
+ "epoch": 0.37170263788968827,
478
+ "grad_norm": 17.87508243629168,
479
+ "learning_rate": 4.868947134606841e-07,
480
+ "logits/chosen": -2.359375,
481
+ "logits/rejected": -2.421875,
482
+ "logps/chosen": -219.0,
483
+ "logps/rejected": -233.0,
484
+ "loss": 0.5365,
485
+ "rewards/accuracies": 0.737500011920929,
486
+ "rewards/chosen": -0.87890625,
487
+ "rewards/margins": 0.6171875,
488
+ "rewards/rejected": -1.4921875,
489
+ "step": 310
490
+ },
491
+ {
492
+ "epoch": 0.38369304556354916,
493
+ "grad_norm": 22.10087172308854,
494
+ "learning_rate": 4.846734784540204e-07,
495
+ "logits/chosen": -2.375,
496
+ "logits/rejected": -2.4375,
497
+ "logps/chosen": -231.0,
498
+ "logps/rejected": -238.0,
499
+ "loss": 0.5703,
500
+ "rewards/accuracies": 0.625,
501
+ "rewards/chosen": -0.8125,
502
+ "rewards/margins": 0.43359375,
503
+ "rewards/rejected": -1.25,
504
+ "step": 320
505
+ },
506
+ {
507
+ "epoch": 0.39568345323741005,
508
+ "grad_norm": 27.704111990126563,
509
+ "learning_rate": 4.824522434473567e-07,
510
+ "logits/chosen": -2.421875,
511
+ "logits/rejected": -2.421875,
512
+ "logps/chosen": -235.0,
513
+ "logps/rejected": -235.0,
514
+ "loss": 0.543,
515
+ "rewards/accuracies": 0.675000011920929,
516
+ "rewards/chosen": -1.15625,
517
+ "rewards/margins": 0.490234375,
518
+ "rewards/rejected": -1.6484375,
519
+ "step": 330
520
+ },
521
+ {
522
+ "epoch": 0.407673860911271,
523
+ "grad_norm": 19.609485654347775,
524
+ "learning_rate": 4.80231008440693e-07,
525
+ "logits/chosen": -2.40625,
526
+ "logits/rejected": -2.421875,
527
+ "logps/chosen": -223.0,
528
+ "logps/rejected": -228.0,
529
+ "loss": 0.5288,
530
+ "rewards/accuracies": 0.75,
531
+ "rewards/chosen": -0.8046875,
532
+ "rewards/margins": 0.61328125,
533
+ "rewards/rejected": -1.4140625,
534
+ "step": 340
535
+ },
536
+ {
537
+ "epoch": 0.4196642685851319,
538
+ "grad_norm": 25.341062357182967,
539
+ "learning_rate": 4.780097734340293e-07,
540
+ "logits/chosen": -2.375,
541
+ "logits/rejected": -2.3125,
542
+ "logps/chosen": -219.0,
543
+ "logps/rejected": -229.0,
544
+ "loss": 0.5653,
545
+ "rewards/accuracies": 0.699999988079071,
546
+ "rewards/chosen": -0.8515625,
547
+ "rewards/margins": 0.546875,
548
+ "rewards/rejected": -1.3984375,
549
+ "step": 350
550
+ },
551
+ {
552
+ "epoch": 0.4316546762589928,
553
+ "grad_norm": 24.609756364283665,
554
+ "learning_rate": 4.757885384273656e-07,
555
+ "logits/chosen": -2.421875,
556
+ "logits/rejected": -2.40625,
557
+ "logps/chosen": -213.0,
558
+ "logps/rejected": -226.0,
559
+ "loss": 0.5599,
560
+ "rewards/accuracies": 0.6499999761581421,
561
+ "rewards/chosen": -0.70703125,
562
+ "rewards/margins": 0.453125,
563
+ "rewards/rejected": -1.15625,
564
+ "step": 360
565
+ },
566
+ {
567
+ "epoch": 0.44364508393285373,
568
+ "grad_norm": 20.448105072112956,
569
+ "learning_rate": 4.7356730342070187e-07,
570
+ "logits/chosen": -2.34375,
571
+ "logits/rejected": -2.40625,
572
+ "logps/chosen": -226.0,
573
+ "logps/rejected": -231.0,
574
+ "loss": 0.5373,
575
+ "rewards/accuracies": 0.7250000238418579,
576
+ "rewards/chosen": -1.171875,
577
+ "rewards/margins": 0.58984375,
578
+ "rewards/rejected": -1.7578125,
579
+ "step": 370
580
+ },
581
+ {
582
+ "epoch": 0.4556354916067146,
583
+ "grad_norm": 20.00137526211279,
584
+ "learning_rate": 4.713460684140382e-07,
585
+ "logits/chosen": -2.390625,
586
+ "logits/rejected": -2.359375,
587
+ "logps/chosen": -225.0,
588
+ "logps/rejected": -228.0,
589
+ "loss": 0.5482,
590
+ "rewards/accuracies": 0.737500011920929,
591
+ "rewards/chosen": -1.4609375,
592
+ "rewards/margins": 0.474609375,
593
+ "rewards/rejected": -1.9375,
594
+ "step": 380
595
+ },
596
+ {
597
+ "epoch": 0.4676258992805755,
598
+ "grad_norm": 20.08046772545977,
599
+ "learning_rate": 4.691248334073745e-07,
600
+ "logits/chosen": -2.3125,
601
+ "logits/rejected": -2.375,
602
+ "logps/chosen": -222.0,
603
+ "logps/rejected": -232.0,
604
+ "loss": 0.5292,
605
+ "rewards/accuracies": 0.699999988079071,
606
+ "rewards/chosen": -1.4453125,
607
+ "rewards/margins": 0.4609375,
608
+ "rewards/rejected": -1.90625,
609
+ "step": 390
610
+ },
611
+ {
612
+ "epoch": 0.47961630695443647,
613
+ "grad_norm": 24.656493214054557,
614
+ "learning_rate": 4.6690359840071075e-07,
615
+ "logits/chosen": -2.34375,
616
+ "logits/rejected": -2.296875,
617
+ "logps/chosen": -203.0,
618
+ "logps/rejected": -220.0,
619
+ "loss": 0.4912,
620
+ "rewards/accuracies": 0.7875000238418579,
621
+ "rewards/chosen": -0.72265625,
622
+ "rewards/margins": 0.69140625,
623
+ "rewards/rejected": -1.4140625,
624
+ "step": 400
625
+ },
626
+ {
627
+ "epoch": 0.49160671462829736,
628
+ "grad_norm": 20.967973696578976,
629
+ "learning_rate": 4.646823633940471e-07,
630
+ "logits/chosen": -2.359375,
631
+ "logits/rejected": -2.453125,
632
+ "logps/chosen": -220.0,
633
+ "logps/rejected": -229.0,
634
+ "loss": 0.5305,
635
+ "rewards/accuracies": 0.699999988079071,
636
+ "rewards/chosen": -0.74609375,
637
+ "rewards/margins": 0.58203125,
638
+ "rewards/rejected": -1.328125,
639
+ "step": 410
640
+ },
641
+ {
642
+ "epoch": 0.5035971223021583,
643
+ "grad_norm": 25.657618682397636,
644
+ "learning_rate": 4.6246112838738336e-07,
645
+ "logits/chosen": -2.328125,
646
+ "logits/rejected": -2.328125,
647
+ "logps/chosen": -217.0,
648
+ "logps/rejected": -217.0,
649
+ "loss": 0.5173,
650
+ "rewards/accuracies": 0.7124999761581421,
651
+ "rewards/chosen": -1.7109375,
652
+ "rewards/margins": 0.625,
653
+ "rewards/rejected": -2.328125,
654
+ "step": 420
655
+ },
656
+ {
657
+ "epoch": 0.5155875299760192,
658
+ "grad_norm": 22.796145877614705,
659
+ "learning_rate": 4.602398933807197e-07,
660
+ "logits/chosen": -2.3125,
661
+ "logits/rejected": -2.421875,
662
+ "logps/chosen": -221.0,
663
+ "logps/rejected": -254.0,
664
+ "loss": 0.5249,
665
+ "rewards/accuracies": 0.6625000238418579,
666
+ "rewards/chosen": -1.1015625,
667
+ "rewards/margins": 0.419921875,
668
+ "rewards/rejected": -1.5234375,
669
+ "step": 430
670
+ },
671
+ {
672
+ "epoch": 0.5275779376498801,
673
+ "grad_norm": 21.830523584389546,
674
+ "learning_rate": 4.5801865837405597e-07,
675
+ "logits/chosen": -2.3125,
676
+ "logits/rejected": -2.296875,
677
+ "logps/chosen": -231.0,
678
+ "logps/rejected": -234.0,
679
+ "loss": 0.4868,
680
+ "rewards/accuracies": 0.75,
681
+ "rewards/chosen": -0.97265625,
682
+ "rewards/margins": 0.75,
683
+ "rewards/rejected": -1.7265625,
684
+ "step": 440
685
+ },
686
+ {
687
+ "epoch": 0.539568345323741,
688
+ "grad_norm": 22.863177511462844,
689
+ "learning_rate": 4.5579742336739224e-07,
690
+ "logits/chosen": -2.375,
691
+ "logits/rejected": -2.3125,
692
+ "logps/chosen": -217.0,
693
+ "logps/rejected": -206.0,
694
+ "loss": 0.5349,
695
+ "rewards/accuracies": 0.800000011920929,
696
+ "rewards/chosen": -0.51953125,
697
+ "rewards/margins": 0.79296875,
698
+ "rewards/rejected": -1.3125,
699
+ "step": 450
700
+ },
701
+ {
702
+ "epoch": 0.5515587529976019,
703
+ "grad_norm": 22.106098891434247,
704
+ "learning_rate": 4.535761883607285e-07,
705
+ "logits/chosen": -2.34375,
706
+ "logits/rejected": -2.34375,
707
+ "logps/chosen": -242.0,
708
+ "logps/rejected": -229.0,
709
+ "loss": 0.4969,
710
+ "rewards/accuracies": 0.6625000238418579,
711
+ "rewards/chosen": -1.0078125,
712
+ "rewards/margins": 0.5234375,
713
+ "rewards/rejected": -1.53125,
714
+ "step": 460
715
+ },
716
+ {
717
+ "epoch": 0.5635491606714629,
718
+ "grad_norm": 21.83764765940895,
719
+ "learning_rate": 4.513549533540648e-07,
720
+ "logits/chosen": -2.34375,
721
+ "logits/rejected": -2.40625,
722
+ "logps/chosen": -221.0,
723
+ "logps/rejected": -229.0,
724
+ "loss": 0.4531,
725
+ "rewards/accuracies": 0.8125,
726
+ "rewards/chosen": -0.9609375,
727
+ "rewards/margins": 0.75390625,
728
+ "rewards/rejected": -1.7109375,
729
+ "step": 470
730
+ },
731
+ {
732
+ "epoch": 0.5755395683453237,
733
+ "grad_norm": 27.75012920313157,
734
+ "learning_rate": 4.491337183474012e-07,
735
+ "logits/chosen": -2.34375,
736
+ "logits/rejected": -2.328125,
737
+ "logps/chosen": -227.0,
738
+ "logps/rejected": -221.0,
739
+ "loss": 0.5074,
740
+ "rewards/accuracies": 0.7250000238418579,
741
+ "rewards/chosen": -1.234375,
742
+ "rewards/margins": 0.625,
743
+ "rewards/rejected": -1.8515625,
744
+ "step": 480
745
+ },
746
+ {
747
+ "epoch": 0.5875299760191847,
748
+ "grad_norm": 17.36030484793641,
749
+ "learning_rate": 4.4691248334073746e-07,
750
+ "logits/chosen": -2.359375,
751
+ "logits/rejected": -2.390625,
752
+ "logps/chosen": -225.0,
753
+ "logps/rejected": -239.0,
754
+ "loss": 0.48,
755
+ "rewards/accuracies": 0.737500011920929,
756
+ "rewards/chosen": -1.375,
757
+ "rewards/margins": 0.73828125,
758
+ "rewards/rejected": -2.109375,
759
+ "step": 490
760
+ },
761
+ {
762
+ "epoch": 0.5995203836930456,
763
+ "grad_norm": 22.808492833261823,
764
+ "learning_rate": 4.4469124833407373e-07,
765
+ "logits/chosen": -2.328125,
766
+ "logits/rejected": -2.328125,
767
+ "logps/chosen": -214.0,
768
+ "logps/rejected": -214.0,
769
+ "loss": 0.5236,
770
+ "rewards/accuracies": 0.6625000238418579,
771
+ "rewards/chosen": -1.3984375,
772
+ "rewards/margins": 0.443359375,
773
+ "rewards/rejected": -1.84375,
774
+ "step": 500
775
+ },
776
+ {
777
+ "epoch": 0.6115107913669064,
778
+ "grad_norm": 23.84926176790092,
779
+ "learning_rate": 4.4247001332741e-07,
780
+ "logits/chosen": -2.3125,
781
+ "logits/rejected": -2.375,
782
+ "logps/chosen": -215.0,
783
+ "logps/rejected": -235.0,
784
+ "loss": 0.4798,
785
+ "rewards/accuracies": 0.699999988079071,
786
+ "rewards/chosen": -0.96484375,
787
+ "rewards/margins": 0.76953125,
788
+ "rewards/rejected": -1.734375,
789
+ "step": 510
790
+ },
791
+ {
792
+ "epoch": 0.6235011990407674,
793
+ "grad_norm": 21.734949611768823,
794
+ "learning_rate": 4.402487783207463e-07,
795
+ "logits/chosen": -2.359375,
796
+ "logits/rejected": -2.375,
797
+ "logps/chosen": -215.0,
798
+ "logps/rejected": -238.0,
799
+ "loss": 0.437,
800
+ "rewards/accuracies": 0.8125,
801
+ "rewards/chosen": -1.0546875,
802
+ "rewards/margins": 0.9921875,
803
+ "rewards/rejected": -2.046875,
804
+ "step": 520
805
+ },
806
+ {
807
+ "epoch": 0.6354916067146283,
808
+ "grad_norm": 17.985205119836653,
809
+ "learning_rate": 4.380275433140826e-07,
810
+ "logits/chosen": -2.390625,
811
+ "logits/rejected": -2.453125,
812
+ "logps/chosen": -216.0,
813
+ "logps/rejected": -229.0,
814
+ "loss": 0.4438,
815
+ "rewards/accuracies": 0.824999988079071,
816
+ "rewards/chosen": -1.0703125,
817
+ "rewards/margins": 1.0625,
818
+ "rewards/rejected": -2.125,
819
+ "step": 530
820
+ },
821
+ {
822
+ "epoch": 0.6474820143884892,
823
+ "grad_norm": 19.26308613682953,
824
+ "learning_rate": 4.358063083074189e-07,
825
+ "logits/chosen": -2.34375,
826
+ "logits/rejected": -2.359375,
827
+ "logps/chosen": -230.0,
828
+ "logps/rejected": -244.0,
829
+ "loss": 0.4505,
830
+ "rewards/accuracies": 0.862500011920929,
831
+ "rewards/chosen": -1.5,
832
+ "rewards/margins": 1.234375,
833
+ "rewards/rejected": -2.734375,
834
+ "step": 540
835
+ },
836
+ {
837
+ "epoch": 0.6594724220623501,
838
+ "grad_norm": 24.596146010502707,
839
+ "learning_rate": 4.335850733007552e-07,
840
+ "logits/chosen": -2.328125,
841
+ "logits/rejected": -2.359375,
842
+ "logps/chosen": -221.0,
843
+ "logps/rejected": -233.0,
844
+ "loss": 0.4943,
845
+ "rewards/accuracies": 0.75,
846
+ "rewards/chosen": -1.6796875,
847
+ "rewards/margins": 0.7421875,
848
+ "rewards/rejected": -2.421875,
849
+ "step": 550
850
+ },
851
+ {
852
+ "epoch": 0.6714628297362111,
853
+ "grad_norm": 15.013286046936686,
854
+ "learning_rate": 4.313638382940915e-07,
855
+ "logits/chosen": -2.3125,
856
+ "logits/rejected": -2.359375,
857
+ "logps/chosen": -217.0,
858
+ "logps/rejected": -236.0,
859
+ "loss": 0.4661,
860
+ "rewards/accuracies": 0.8374999761581421,
861
+ "rewards/chosen": -0.9921875,
862
+ "rewards/margins": 0.984375,
863
+ "rewards/rejected": -1.9765625,
864
+ "step": 560
865
+ },
866
+ {
867
+ "epoch": 0.6834532374100719,
868
+ "grad_norm": 19.571343970012546,
869
+ "learning_rate": 4.291426032874278e-07,
870
+ "logits/chosen": -2.28125,
871
+ "logits/rejected": -2.34375,
872
+ "logps/chosen": -218.0,
873
+ "logps/rejected": -258.0,
874
+ "loss": 0.43,
875
+ "rewards/accuracies": 0.800000011920929,
876
+ "rewards/chosen": -1.2265625,
877
+ "rewards/margins": 1.03125,
878
+ "rewards/rejected": -2.25,
879
+ "step": 570
880
+ },
881
+ {
882
+ "epoch": 0.6954436450839329,
883
+ "grad_norm": 20.377379214041834,
884
+ "learning_rate": 4.269213682807641e-07,
885
+ "logits/chosen": -2.34375,
886
+ "logits/rejected": -2.328125,
887
+ "logps/chosen": -227.0,
888
+ "logps/rejected": -221.0,
889
+ "loss": 0.4403,
890
+ "rewards/accuracies": 0.762499988079071,
891
+ "rewards/chosen": -0.83984375,
892
+ "rewards/margins": 0.9375,
893
+ "rewards/rejected": -1.7734375,
894
+ "step": 580
895
+ },
896
+ {
897
+ "epoch": 0.7074340527577938,
898
+ "grad_norm": 25.88308379473588,
899
+ "learning_rate": 4.247001332741004e-07,
900
+ "logits/chosen": -2.328125,
901
+ "logits/rejected": -2.40625,
902
+ "logps/chosen": -219.0,
903
+ "logps/rejected": -239.0,
904
+ "loss": 0.4357,
905
+ "rewards/accuracies": 0.8374999761581421,
906
+ "rewards/chosen": -0.78515625,
907
+ "rewards/margins": 1.0703125,
908
+ "rewards/rejected": -1.8515625,
909
+ "step": 590
910
+ },
911
+ {
912
+ "epoch": 0.7194244604316546,
913
+ "grad_norm": 21.223402057931814,
914
+ "learning_rate": 4.2247889826743666e-07,
915
+ "logits/chosen": -2.3125,
916
+ "logits/rejected": -2.34375,
917
+ "logps/chosen": -227.0,
918
+ "logps/rejected": -232.0,
919
+ "loss": 0.4865,
920
+ "rewards/accuracies": 0.7875000238418579,
921
+ "rewards/chosen": -0.8515625,
922
+ "rewards/margins": 0.8125,
923
+ "rewards/rejected": -1.6640625,
924
+ "step": 600
925
+ },
926
+ {
927
+ "epoch": 0.7314148681055156,
928
+ "grad_norm": 26.413684307486818,
929
+ "learning_rate": 4.2025766326077294e-07,
930
+ "logits/chosen": -2.3125,
931
+ "logits/rejected": -2.375,
932
+ "logps/chosen": -222.0,
933
+ "logps/rejected": -231.0,
934
+ "loss": 0.4473,
935
+ "rewards/accuracies": 0.75,
936
+ "rewards/chosen": -1.453125,
937
+ "rewards/margins": 0.984375,
938
+ "rewards/rejected": -2.4375,
939
+ "step": 610
940
+ },
941
+ {
942
+ "epoch": 0.7434052757793765,
943
+ "grad_norm": 19.274016165683612,
944
+ "learning_rate": 4.1803642825410926e-07,
945
+ "logits/chosen": -2.25,
946
+ "logits/rejected": -2.296875,
947
+ "logps/chosen": -218.0,
948
+ "logps/rejected": -241.0,
949
+ "loss": 0.4574,
950
+ "rewards/accuracies": 0.800000011920929,
951
+ "rewards/chosen": -1.2734375,
952
+ "rewards/margins": 0.94140625,
953
+ "rewards/rejected": -2.21875,
954
+ "step": 620
955
+ },
956
+ {
957
+ "epoch": 0.7553956834532374,
958
+ "grad_norm": 21.962129244766075,
959
+ "learning_rate": 4.158151932474456e-07,
960
+ "logits/chosen": -2.328125,
961
+ "logits/rejected": -2.421875,
962
+ "logps/chosen": -236.0,
963
+ "logps/rejected": -234.0,
964
+ "loss": 0.4202,
965
+ "rewards/accuracies": 0.8125,
966
+ "rewards/chosen": -1.546875,
967
+ "rewards/margins": 1.09375,
968
+ "rewards/rejected": -2.640625,
969
+ "step": 630
970
+ },
971
+ {
972
+ "epoch": 0.7673860911270983,
973
+ "grad_norm": 19.250420656857816,
974
+ "learning_rate": 4.1359395824078187e-07,
975
+ "logits/chosen": -2.328125,
976
+ "logits/rejected": -2.328125,
977
+ "logps/chosen": -231.0,
978
+ "logps/rejected": -256.0,
979
+ "loss": 0.423,
980
+ "rewards/accuracies": 0.824999988079071,
981
+ "rewards/chosen": -2.109375,
982
+ "rewards/margins": 1.1640625,
983
+ "rewards/rejected": -3.28125,
984
+ "step": 640
985
+ },
986
+ {
987
+ "epoch": 0.7793764988009593,
988
+ "grad_norm": 17.26038839326138,
989
+ "learning_rate": 4.1137272323411815e-07,
990
+ "logits/chosen": -2.296875,
991
+ "logits/rejected": -2.3125,
992
+ "logps/chosen": -223.0,
993
+ "logps/rejected": -245.0,
994
+ "loss": 0.4144,
995
+ "rewards/accuracies": 0.7875000238418579,
996
+ "rewards/chosen": -2.140625,
997
+ "rewards/margins": 1.140625,
998
+ "rewards/rejected": -3.28125,
999
+ "step": 650
1000
+ },
1001
+ {
1002
+ "epoch": 0.7913669064748201,
1003
+ "grad_norm": 22.725812386482403,
1004
+ "learning_rate": 4.091514882274544e-07,
1005
+ "logits/chosen": -2.328125,
1006
+ "logits/rejected": -2.34375,
1007
+ "logps/chosen": -224.0,
1008
+ "logps/rejected": -223.0,
1009
+ "loss": 0.4619,
1010
+ "rewards/accuracies": 0.8125,
1011
+ "rewards/chosen": -1.6328125,
1012
+ "rewards/margins": 0.75,
1013
+ "rewards/rejected": -2.390625,
1014
+ "step": 660
1015
+ },
1016
+ {
1017
+ "epoch": 0.8033573141486811,
1018
+ "grad_norm": 26.346880341026353,
1019
+ "learning_rate": 4.069302532207907e-07,
1020
+ "logits/chosen": -2.34375,
1021
+ "logits/rejected": -2.34375,
1022
+ "logps/chosen": -234.0,
1023
+ "logps/rejected": -233.0,
1024
+ "loss": 0.4198,
1025
+ "rewards/accuracies": 0.800000011920929,
1026
+ "rewards/chosen": -1.09375,
1027
+ "rewards/margins": 1.2109375,
1028
+ "rewards/rejected": -2.296875,
1029
+ "step": 670
1030
+ },
1031
+ {
1032
+ "epoch": 0.815347721822542,
1033
+ "grad_norm": 16.341325440490397,
1034
+ "learning_rate": 4.047090182141271e-07,
1035
+ "logits/chosen": -2.375,
1036
+ "logits/rejected": -2.328125,
1037
+ "logps/chosen": -219.0,
1038
+ "logps/rejected": -237.0,
1039
+ "loss": 0.4215,
1040
+ "rewards/accuracies": 0.800000011920929,
1041
+ "rewards/chosen": -1.828125,
1042
+ "rewards/margins": 0.8359375,
1043
+ "rewards/rejected": -2.65625,
1044
+ "step": 680
1045
+ },
1046
+ {
1047
+ "epoch": 0.8273381294964028,
1048
+ "grad_norm": 19.597918931735652,
1049
+ "learning_rate": 4.0248778320746336e-07,
1050
+ "logits/chosen": -2.34375,
1051
+ "logits/rejected": -2.421875,
1052
+ "logps/chosen": -225.0,
1053
+ "logps/rejected": -246.0,
1054
+ "loss": 0.4179,
1055
+ "rewards/accuracies": 0.762499988079071,
1056
+ "rewards/chosen": -1.6640625,
1057
+ "rewards/margins": 1.046875,
1058
+ "rewards/rejected": -2.71875,
1059
+ "step": 690
1060
+ },
1061
+ {
1062
+ "epoch": 0.8393285371702638,
1063
+ "grad_norm": 16.19010210226658,
1064
+ "learning_rate": 4.0026654820079964e-07,
1065
+ "logits/chosen": -2.296875,
1066
+ "logits/rejected": -2.296875,
1067
+ "logps/chosen": -242.0,
1068
+ "logps/rejected": -253.0,
1069
+ "loss": 0.4064,
1070
+ "rewards/accuracies": 0.862500011920929,
1071
+ "rewards/chosen": -1.6875,
1072
+ "rewards/margins": 1.1875,
1073
+ "rewards/rejected": -2.875,
1074
+ "step": 700
1075
+ },
1076
+ {
1077
+ "epoch": 0.8513189448441247,
1078
+ "grad_norm": 19.378154801231126,
1079
+ "learning_rate": 3.980453131941359e-07,
1080
+ "logits/chosen": -2.3125,
1081
+ "logits/rejected": -2.3125,
1082
+ "logps/chosen": -230.0,
1083
+ "logps/rejected": -243.0,
1084
+ "loss": 0.382,
1085
+ "rewards/accuracies": 0.7749999761581421,
1086
+ "rewards/chosen": -1.703125,
1087
+ "rewards/margins": 1.234375,
1088
+ "rewards/rejected": -2.9375,
1089
+ "step": 710
1090
+ },
1091
+ {
1092
+ "epoch": 0.8633093525179856,
1093
+ "grad_norm": 17.875697953531226,
1094
+ "learning_rate": 3.958240781874722e-07,
1095
+ "logits/chosen": -2.265625,
1096
+ "logits/rejected": -2.3125,
1097
+ "logps/chosen": -230.0,
1098
+ "logps/rejected": -231.0,
1099
+ "loss": 0.3839,
1100
+ "rewards/accuracies": 0.8999999761581421,
1101
+ "rewards/chosen": -1.6171875,
1102
+ "rewards/margins": 1.28125,
1103
+ "rewards/rejected": -2.90625,
1104
+ "step": 720
1105
+ },
1106
+ {
1107
+ "epoch": 0.8752997601918465,
1108
+ "grad_norm": 21.20250450740525,
1109
+ "learning_rate": 3.936028431808085e-07,
1110
+ "logits/chosen": -2.390625,
1111
+ "logits/rejected": -2.34375,
1112
+ "logps/chosen": -231.0,
1113
+ "logps/rejected": -231.0,
1114
+ "loss": 0.3574,
1115
+ "rewards/accuracies": 0.887499988079071,
1116
+ "rewards/chosen": -1.609375,
1117
+ "rewards/margins": 1.421875,
1118
+ "rewards/rejected": -3.03125,
1119
+ "step": 730
1120
+ },
1121
+ {
1122
+ "epoch": 0.8872901678657075,
1123
+ "grad_norm": 17.46000299554747,
1124
+ "learning_rate": 3.913816081741448e-07,
1125
+ "logits/chosen": -2.328125,
1126
+ "logits/rejected": -2.359375,
1127
+ "logps/chosen": -216.0,
1128
+ "logps/rejected": -237.0,
1129
+ "loss": 0.3473,
1130
+ "rewards/accuracies": 0.8999999761581421,
1131
+ "rewards/chosen": -1.703125,
1132
+ "rewards/margins": 1.625,
1133
+ "rewards/rejected": -3.328125,
1134
+ "step": 740
1135
+ },
1136
+ {
1137
+ "epoch": 0.8992805755395683,
1138
+ "grad_norm": 17.53738029583566,
1139
+ "learning_rate": 3.8916037316748113e-07,
1140
+ "logits/chosen": -2.296875,
1141
+ "logits/rejected": -2.28125,
1142
+ "logps/chosen": -222.0,
1143
+ "logps/rejected": -232.0,
1144
+ "loss": 0.371,
1145
+ "rewards/accuracies": 0.8374999761581421,
1146
+ "rewards/chosen": -2.09375,
1147
+ "rewards/margins": 1.2421875,
1148
+ "rewards/rejected": -3.328125,
1149
+ "step": 750
1150
+ },
1151
+ {
1152
+ "epoch": 0.9112709832134293,
1153
+ "grad_norm": 13.845287693810857,
1154
+ "learning_rate": 3.869391381608174e-07,
1155
+ "logits/chosen": -2.3125,
1156
+ "logits/rejected": -2.359375,
1157
+ "logps/chosen": -227.0,
1158
+ "logps/rejected": -239.0,
1159
+ "loss": 0.3346,
1160
+ "rewards/accuracies": 0.925000011920929,
1161
+ "rewards/chosen": -1.359375,
1162
+ "rewards/margins": 1.28125,
1163
+ "rewards/rejected": -2.640625,
1164
+ "step": 760
1165
+ },
1166
+ {
1167
+ "epoch": 0.9232613908872902,
1168
+ "grad_norm": 18.53800658699909,
1169
+ "learning_rate": 3.847179031541537e-07,
1170
+ "logits/chosen": -2.265625,
1171
+ "logits/rejected": -2.328125,
1172
+ "logps/chosen": -225.0,
1173
+ "logps/rejected": -227.0,
1174
+ "loss": 0.3642,
1175
+ "rewards/accuracies": 0.8500000238418579,
1176
+ "rewards/chosen": -1.671875,
1177
+ "rewards/margins": 1.3125,
1178
+ "rewards/rejected": -2.984375,
1179
+ "step": 770
1180
+ },
1181
+ {
1182
+ "epoch": 0.935251798561151,
1183
+ "grad_norm": 21.872485752073064,
1184
+ "learning_rate": 3.8249666814749e-07,
1185
+ "logits/chosen": -2.3125,
1186
+ "logits/rejected": -2.3125,
1187
+ "logps/chosen": -240.0,
1188
+ "logps/rejected": -237.0,
1189
+ "loss": 0.3391,
1190
+ "rewards/accuracies": 0.8999999761581421,
1191
+ "rewards/chosen": -2.015625,
1192
+ "rewards/margins": 1.5078125,
1193
+ "rewards/rejected": -3.53125,
1194
+ "step": 780
1195
+ },
1196
+ {
1197
+ "epoch": 0.947242206235012,
1198
+ "grad_norm": 21.111212041972365,
1199
+ "learning_rate": 3.802754331408263e-07,
1200
+ "logits/chosen": -2.28125,
1201
+ "logits/rejected": -2.296875,
1202
+ "logps/chosen": -232.0,
1203
+ "logps/rejected": -256.0,
1204
+ "loss": 0.3679,
1205
+ "rewards/accuracies": 0.7875000238418579,
1206
+ "rewards/chosen": -2.296875,
1207
+ "rewards/margins": 1.3203125,
1208
+ "rewards/rejected": -3.625,
1209
+ "step": 790
1210
+ },
1211
+ {
1212
+ "epoch": 0.9592326139088729,
1213
+ "grad_norm": 21.61033072214478,
1214
+ "learning_rate": 3.7805419813416256e-07,
1215
+ "logits/chosen": -2.28125,
1216
+ "logits/rejected": -2.265625,
1217
+ "logps/chosen": -226.0,
1218
+ "logps/rejected": -241.0,
1219
+ "loss": 0.3427,
1220
+ "rewards/accuracies": 0.8999999761581421,
1221
+ "rewards/chosen": -2.5625,
1222
+ "rewards/margins": 1.4140625,
1223
+ "rewards/rejected": -3.96875,
1224
+ "step": 800
1225
+ },
1226
+ {
1227
+ "epoch": 0.9712230215827338,
1228
+ "grad_norm": 15.32449671679388,
1229
+ "learning_rate": 3.7583296312749884e-07,
1230
+ "logits/chosen": -2.234375,
1231
+ "logits/rejected": -2.28125,
1232
+ "logps/chosen": -234.0,
1233
+ "logps/rejected": -252.0,
1234
+ "loss": 0.3787,
1235
+ "rewards/accuracies": 0.824999988079071,
1236
+ "rewards/chosen": -2.71875,
1237
+ "rewards/margins": 1.53125,
1238
+ "rewards/rejected": -4.25,
1239
+ "step": 810
1240
+ },
1241
+ {
1242
+ "epoch": 0.9832134292565947,
1243
+ "grad_norm": 19.67405128244237,
1244
+ "learning_rate": 3.7361172812083517e-07,
1245
+ "logits/chosen": -2.34375,
1246
+ "logits/rejected": -2.28125,
1247
+ "logps/chosen": -230.0,
1248
+ "logps/rejected": -232.0,
1249
+ "loss": 0.3254,
1250
+ "rewards/accuracies": 0.9125000238418579,
1251
+ "rewards/chosen": -1.9453125,
1252
+ "rewards/margins": 1.46875,
1253
+ "rewards/rejected": -3.421875,
1254
+ "step": 820
1255
+ },
1256
+ {
1257
+ "epoch": 0.9952038369304557,
1258
+ "grad_norm": 21.005105323056593,
1259
+ "learning_rate": 3.713904931141715e-07,
1260
+ "logits/chosen": -2.296875,
1261
+ "logits/rejected": -2.28125,
1262
+ "logps/chosen": -237.0,
1263
+ "logps/rejected": -239.0,
1264
+ "loss": 0.2971,
1265
+ "rewards/accuracies": 0.8999999761581421,
1266
+ "rewards/chosen": -1.5234375,
1267
+ "rewards/margins": 1.6328125,
1268
+ "rewards/rejected": -3.15625,
1269
+ "step": 830
1270
+ },
1271
+ {
1272
+ "epoch": 1.0,
1273
+ "eval_logits/chosen": -2.296875,
1274
+ "eval_logits/rejected": -2.328125,
1275
+ "eval_logps/chosen": -228.0,
1276
+ "eval_logps/rejected": -236.0,
1277
+ "eval_loss": 0.6048940420150757,
1278
+ "eval_rewards/accuracies": 0.6617646813392639,
1279
+ "eval_rewards/chosen": -1.9921875,
1280
+ "eval_rewards/margins": 0.93359375,
1281
+ "eval_rewards/rejected": -2.921875,
1282
+ "eval_runtime": 19.9965,
1283
+ "eval_samples_per_second": 20.053,
1284
+ "eval_steps_per_second": 0.85,
1285
+ "step": 834
1286
+ }
1287
+ ],
1288
+ "logging_steps": 10,
1289
+ "max_steps": 2502,
1290
+ "num_input_tokens_seen": 0,
1291
+ "num_train_epochs": 3,
1292
+ "save_steps": 500,
1293
+ "stateful_callbacks": {
1294
+ "TrainerControl": {
1295
+ "args": {
1296
+ "should_epoch_stop": false,
1297
+ "should_evaluate": false,
1298
+ "should_log": false,
1299
+ "should_save": true,
1300
+ "should_training_stop": false
1301
+ },
1302
+ "attributes": {}
1303
+ }
1304
+ },
1305
+ "total_flos": 0.0,
1306
+ "train_batch_size": 8,
1307
+ "trial_name": null,
1308
+ "trial_params": null
1309
+ }
last-checkpoint/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:282276e8ca2c3bb39b9c69bbf3414c492b1692d30562f258099b171b931a0960
3
+ size 7800
last-checkpoint/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
last-checkpoint/zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)