Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2-default.zip +3 -0
- ppo-LunarLander-v2-default/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-default/data +94 -0
- ppo-LunarLander-v2-default/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-default/policy.pth +3 -0
- ppo-LunarLander-v2-default/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-default/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 272.96 +/- 13.01
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe50e71d170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe50e71d200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe50e71d290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe50e71d320>", "_build": "<function ActorCriticPolicy._build at 0x7fe50e71d3b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe50e71d440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe50e71d4d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe50e71d560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe50e71d5f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe50e71d680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe50e71d710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe50e6ef2a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 12, "num_timesteps": 1511424, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652405932.6418974, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAQAAAAAAAIAql70REBg/cNShPS9v2L4VmIk86l2jPAAAAAAAAAAAZrC5PN8K5TzaLg++8ngpvv4WVb0OMJK9AAAAAAAAAABm0ow8qS9bvJytBL5qKWi9VIzUPcB9PT4AAIA/AACAPzPXhL3WWYY/UxKYvBZcjr6oge+9DrGguwAAAAAAAAAAAM3JPBlKrD/Ag6g+kwzpvkSWQTwZZBA+AAAAAAAAAACaZmk9m5OHPdN4dL6niiy+HbjQvEP27r0AAAAAAAAAAJrmrDwUipW6SmrPtmL+6bH76fk6tv3wNQAAgD8AAIA/2s2tvchlGD9PsEo+F8mvvjKPbzy4Hks9AAAAAAAAAABANiG+vGrgPr2tbz4EV7C+zr/wPDZIRbwAAAAAAAAAADOBQTzGE6g/wC3MPTBkz75F0YW8CpaSvAAAAAAAAAAAmlrhPDC2sT+2uow9f5i+vnXWzLymaAg+AAAAAAAAAACaDW09QUGoP6JUNj8KLxW/IbJZvC72nj0AAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLDEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVfwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLDIWUjAFDlHSUUpQu"}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDcUdb/KmbECUhpRSlIwBbJRNNwGMAXSUR0CZUY5wfhdddX2UKGgGaAloD0MIyk+qfboXckCUhpRSlGgVTQABaBZHQJlSDyZrpJR1fZQoaAZoCWgPQwivd3+8VyVtQJSGlFKUaBVNEAFoFkdAmVJeJ+DvmnV9lChoBmgJaA9DCDlhwmhW6G9AlIaUUpRoFU0JAWgWR0CZUrSAH3UQdX2UKGgGaAloD0MIjj7mA4L7bkCUhpRSlGgVTScBaBZHQJlTynn+yZ91fZQoaAZoCWgPQwiaet0icBRwQJSGlFKUaBVNGgFoFkdAmVU+Vkc0cnV9lChoBmgJaA9DCIjZy7ZTLm5AlIaUUpRoFU0tAWgWR0CZVgEHMUypdX2UKGgGaAloD0MItteC3tsAc0CUhpRSlGgVTQ8BaBZHQJlWJ4mkWRB1fZQoaAZoCWgPQwjeyDzyRx1wQJSGlFKUaBVNfgFoFkdAmVZldHDrJXV9lChoBmgJaA9DCDS8WYP3jHBAlIaUUpRoFUv7aBZHQJlWp33YcvN1fZQoaAZoCWgPQwjo+j4cZBdxQJSGlFKUaBVL+mgWR0CZVuLUkOZtdX2UKGgGaAloD0MITpgwmtURckCUhpRSlGgVTRIBaBZHQJlXZGgBcRl1fZQoaAZoCWgPQwibG9MTFqNxQJSGlFKUaBVL42gWR0CZV2nTiKixdX2UKGgGaAloD0MI1o13R4YScUCUhpRSlGgVTQIBaBZHQJlXtdnkDIR1fZQoaAZoCWgPQwg7URISaQJwQJSGlFKUaBVNLAFoFkdAmVgAMpgCwXV9lChoBmgJaA9DCPqAQGfS9mxAlIaUUpRoFU0PAWgWR0CZZiJm/WUbdX2UKGgGaAloD0MI1hwgmGPeckCUhpRSlGgVTTEBaBZHQJln73wkPc11fZQoaAZoCWgPQwglrfiGQg5yQJSGlFKUaBVL8mgWR0CZZ/e1a4c4dX2UKGgGaAloD0MIKjkn9lAdcUCUhpRSlGgVS/hoFkdAmWkwfQrtmnV9lChoBmgJaA9DCI20VN5ON3NAlIaUUpRoFU0XAWgWR0CZaZzv7WNFdX2UKGgGaAloD0MI/686cuRwckCUhpRSlGgVTREBaBZHQJlqZNpM6BB1fZQoaAZoCWgPQwhPdcjNMO5wQJSGlFKUaBVL/GgWR0CZancFhXr/dX2UKGgGaAloD0MISQ7Y1eQ0ckCUhpRSlGgVTSMBaBZHQJlqk4rBj4J1fZQoaAZoCWgPQwg0hjlBmwZyQJSGlFKUaBVNdgFoFkdAmWv4/qxC6nV9lChoBmgJaA9DCL5p+uxAM3FAlIaUUpRoFU0IAWgWR0CZbCcVgx8EdX2UKGgGaAloD0MIg0wyctagcUCUhpRSlGgVTT8BaBZHQJlsVpztCzF1fZQoaAZoCWgPQwjp1QClYb1xQJSGlFKUaBVNSQFoFkdAmWzde+mFanV9lChoBmgJaA9DCDy/KEH/gnBAlIaUUpRoFU0AAWgWR0CZbfIIF/x2dX2UKGgGaAloD0MIbef7qXHtcUCUhpRSlGgVTRsBaBZHQJluj+n62v11fZQoaAZoCWgPQwhGzVfJB11wQJSGlFKUaBVNBQFoFkdAmW9Pxx1gY3V9lChoBmgJaA9DCAH76NSViG9AlIaUUpRoFU0AAWgWR0CZb5JDmbLEdX2UKGgGaAloD0MINCxGXSvccECUhpRSlGgVTQIBaBZHQJlwXo/zJ6p1fZQoaAZoCWgPQwjBj2rYr+JyQJSGlFKUaBVNJQFoFkdAmXFKltTDO3V9lChoBmgJaA9DCB5U4jpGQW1AlIaUUpRoFU07AWgWR0CZcgHGCI1tdX2UKGgGaAloD0MIfEeNCfErckCUhpRSlGgVTQQBaBZHQJlyKWNWEK51fZQoaAZoCWgPQwjWjAxyV41xQJSGlFKUaBVL/WgWR0CZcl45Lh73dX2UKGgGaAloD0MI2xX6YJm/ckCUhpRSlGgVTU4CaBZHQJlybgm7aqV1fZQoaAZoCWgPQwhbsirCjUVzQJSGlFKUaBVNMwFoFkdAmXP+rlvIfnV9lChoBmgJaA9DCL2NzY7UlHBAlIaUUpRoFU0lAWgWR0CZdM5lvqC6dX2UKGgGaAloD0MIAmTo2AGkcUCUhpRSlGgVTRIBaBZHQJl0+EHt4Rp1fZQoaAZoCWgPQwhv88ZJoQFyQJSGlFKUaBVL/mgWR0CZdW7gbZOBdX2UKGgGaAloD0MIG55eKcthcUCUhpRSlGgVTZ8BaBZHQJl1vtJFspJ1fZQoaAZoCWgPQwia0vpbwq5wQJSGlFKUaBVNIwFoFkdAmXcHNs3yZ3V9lChoBmgJaA9DCFiQZiwaim5AlIaUUpRoFU1bAWgWR0CZd1FvAGjcdX2UKGgGaAloD0MITWVR2EXickCUhpRSlGgVTSABaBZHQJl33iCJ40N1fZQoaAZoCWgPQwhvDWyV4NByQJSGlFKUaBVNCQFoFkdAmXhjHXEqD3V9lChoBmgJaA9DCLr2BfTCam1AlIaUUpRoFU00AWgWR0CZeRSidrftdX2UKGgGaAloD0MIm+eIfNeacUCUhpRSlGgVTUsBaBZHQJl5elwcYIl1fZQoaAZoCWgPQwjJPsiyoJRwQJSGlFKUaBVNSgFoFkdAmXnSd4FA3XV9lChoBmgJaA9DCKYmwRvSdXBAlIaUUpRoFU0EAWgWR0CZegSH/LkkdX2UKGgGaAloD0MIGavN/+ubcECUhpRSlGgVTRgBaBZHQJl7MQQL/jt1fZQoaAZoCWgPQwhNgczOIlNxQJSGlFKUaBVNDgFoFkdAmXuby+YdAHV9lChoBmgJaA9DCAlSKXa0qXJAlIaUUpRoFU0lAWgWR0CZfGmYSg5BdX2UKGgGaAloD0MIeXk6V9QhckCUhpRSlGgVS/JoFkdAmYsVAu7HyXV9lChoBmgJaA9DCLt868O673BAlIaUUpRoFU1xAWgWR0CZixvK2a2GdX2UKGgGaAloD0MIkL+0qM+4cECUhpRSlGgVTRoBaBZHQJmLNR2r4nF1fZQoaAZoCWgPQwhoJEIj2NxvQJSGlFKUaBVNJwFoFkdAmYu42GZeA3V9lChoBmgJaA9DCL5p+uyAtlFAlIaUUpRoFUvWaBZHQJmL8/PgNw11fZQoaAZoCWgPQwh1kNeDya9zQJSGlFKUaBVNFgFoFkdAmYz1gQYk3XV9lChoBmgJaA9DCGd9yjHZs29AlIaUUpRoFU0cAWgWR0CZjeO938oAdX2UKGgGaAloD0MI/gqZK4PLckCUhpRSlGgVTV8BaBZHQJmOAYR/ViF1fZQoaAZoCWgPQwg2scBXtFxxQJSGlFKUaBVL4GgWR0CZjlbONYKZdX2UKGgGaAloD0MIiZY8nhb+cECUhpRSlGgVTScBaBZHQJmOWPMjeKt1fZQoaAZoCWgPQwibrFEPkZFwQJSGlFKUaBVNOgFoFkdAmZAJG4I8hnV9lChoBmgJaA9DCIY97fBXP3JAlIaUUpRoFU0TAWgWR0CZkGGm1pj+dX2UKGgGaAloD0MIoYSZtn80cUCUhpRSlGgVTQABaBZHQJmQ6B6KLsN1fZQoaAZoCWgPQwjsFKsG4bFvQJSGlFKUaBVNEgFoFkdAmZFL6P8ye3V9lChoBmgJaA9DCO6x9KHLwHBAlIaUUpRoFUv8aBZHQJmReYBvJil1fZQoaAZoCWgPQwjiV6zhYntyQJSGlFKUaBVNJQFoFkdAmZHKij+Jg3V9lChoBmgJaA9DCGMMrON4nG1AlIaUUpRoFU0AAWgWR0CZkcm1pj+adX2UKGgGaAloD0MIZCKl2bxYcUCUhpRSlGgVS+xoFkdAmZJIAwPAf3V9lChoBmgJaA9DCDGx+bi2bm1AlIaUUpRoFU0AAWgWR0CZk9rUsnRcdX2UKGgGaAloD0MI2LeTiPC+cUCUhpRSlGgVTR0BaBZHQJmUDs+mm+F1fZQoaAZoCWgPQwj7rZ0oSb5wQJSGlFKUaBVNNQFoFkdAmZUcinpB5XV9lChoBmgJaA9DCGtGBrmLeHBAlIaUUpRoFU1JAWgWR0CZlTwu/UONdX2UKGgGaAloD0MIo81xblODcECUhpRSlGgVTQoBaBZHQJmVycOLBKt1fZQoaAZoCWgPQwhqEyf3uzxxQJSGlFKUaBVNBAFoFkdAmZYD4xk/bHV9lChoBmgJaA9DCMwJ2uTwN1FAlIaUUpRoFUv7aBZHQJmWst/WlM11fZQoaAZoCWgPQwhdT3RdeGZxQJSGlFKUaBVL92gWR0CZlss3yZrpdX2UKGgGaAloD0MI3rBtUWYEckCUhpRSlGgVS+xoFkdAmZdxoh6jWXV9lChoBmgJaA9DCNqu0AdLmXFAlIaUUpRoFU0NAWgWR0CZl5EMb3oLdX2UKGgGaAloD0MIIxXGFgK5bkCUhpRSlGgVTToBaBZHQJmXoqJ/G2l1fZQoaAZoCWgPQwiVSQ1twLxwQJSGlFKUaBVNKAFoFkdAmZgHQtz0YnV9lChoBmgJaA9DCHYb1H7reG5AlIaUUpRoFU0UAWgWR0CZmarYGt6pdX2UKGgGaAloD0MIgZiEC3kCUkCUhpRSlGgVS+RoFkdAmZnjr7fpEHV9lChoBmgJaA9DCAcLJ2k+0HJAlIaUUpRoFUvqaBZHQJmajFPznRt1fZQoaAZoCWgPQwjGUE60azFwQJSGlFKUaBVNNQFoFkdAmZqWKqGUOnV9lChoBmgJaA9DCICbxYuFDm5AlIaUUpRoFUv7aBZHQJmbD4YaYNR1fZQoaAZoCWgPQwjLgLOUbFxyQJSGlFKUaBVNIQFoFkdAmZsPw/gR9XV9lChoBmgJaA9DCP9byY6NjHBAlIaUUpRoFU0NAWgWR0CZnCxKg7HRdX2UKGgGaAloD0MILVqAtlUYcECUhpRSlGgVTQ4BaBZHQJmdC0a6z3R1fZQoaAZoCWgPQwjeHK7VnkVzQJSGlFKUaBVNOgFoFkdAmZ0WqtHQQnV9lChoBmgJaA9DCFhyFYufKnBAlIaUUpRoFU0nAWgWR0CZnbPH1e0HdX2UKGgGaAloD0MIeo7Id+nycECUhpRSlGgVTToBaBZHQJmd6UbDMvB1fZQoaAZoCWgPQwgW31D4rDFxQJSGlFKUaBVNHQFoFkdAmZ37bg0j1XV9lChoBmgJaA9DCH0/NV665XFAlIaUUpRoFUv2aBZHQJmf7fP5YYB1fZQoaAZoCWgPQwgJGjOJOlNzQJSGlFKUaBVNJQFoFkdAmaBV6Z6Uq3V9lChoBmgJaA9DCJrv4CeO1XBAlIaUUpRoFU08AWgWR0CZoKdy1eBydX2UKGgGaAloD0MIr2Ab8aRjcUCUhpRSlGgVTRcBaBZHQJmgxXPqs2h1fZQoaAZoCWgPQwhjDoKOlrlwQJSGlFKUaBVNAAFoFkdAmaDNXLeQ+3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2-default.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eba18fb22d5da1b84d8cd4ef57026ac95ab435f5441aef73cb0b5462d79d9227
|
3 |
+
size 143910
|
ppo-LunarLander-v2-default/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2-default/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe50e71d170>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe50e71d200>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe50e71d290>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe50e71d320>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe50e71d3b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe50e71d440>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe50e71d4d0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe50e71d560>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe50e71d5f0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe50e71d680>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe50e71d710>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fe50e6ef2a0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 12,
|
45 |
+
"num_timesteps": 1511424,
|
46 |
+
"_total_timesteps": 1500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652405932.6418974,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWV9QEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAQAAAAAAAIAql70REBg/cNShPS9v2L4VmIk86l2jPAAAAAAAAAAAZrC5PN8K5TzaLg++8ngpvv4WVb0OMJK9AAAAAAAAAABm0ow8qS9bvJytBL5qKWi9VIzUPcB9PT4AAIA/AACAPzPXhL3WWYY/UxKYvBZcjr6oge+9DrGguwAAAAAAAAAAAM3JPBlKrD/Ag6g+kwzpvkSWQTwZZBA+AAAAAAAAAACaZmk9m5OHPdN4dL6niiy+HbjQvEP27r0AAAAAAAAAAJrmrDwUipW6SmrPtmL+6bH76fk6tv3wNQAAgD8AAIA/2s2tvchlGD9PsEo+F8mvvjKPbzy4Hks9AAAAAAAAAABANiG+vGrgPr2tbz4EV7C+zr/wPDZIRbwAAAAAAAAAADOBQTzGE6g/wC3MPTBkz75F0YW8CpaSvAAAAAAAAAAAmlrhPDC2sT+2uow9f5i+vnXWzLymaAg+AAAAAAAAAACaDW09QUGoP6JUNj8KLxW/IbJZvC72nj0AAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLDEsIhpSMAUOUdJRSlC4="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVfwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLDIWUjAFDlHSUUpQu"
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.007616000000000067,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVbRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDcUdb/KmbECUhpRSlIwBbJRNNwGMAXSUR0CZUY5wfhdddX2UKGgGaAloD0MIyk+qfboXckCUhpRSlGgVTQABaBZHQJlSDyZrpJR1fZQoaAZoCWgPQwivd3+8VyVtQJSGlFKUaBVNEAFoFkdAmVJeJ+DvmnV9lChoBmgJaA9DCDlhwmhW6G9AlIaUUpRoFU0JAWgWR0CZUrSAH3UQdX2UKGgGaAloD0MIjj7mA4L7bkCUhpRSlGgVTScBaBZHQJlTynn+yZ91fZQoaAZoCWgPQwiaet0icBRwQJSGlFKUaBVNGgFoFkdAmVU+Vkc0cnV9lChoBmgJaA9DCIjZy7ZTLm5AlIaUUpRoFU0tAWgWR0CZVgEHMUypdX2UKGgGaAloD0MItteC3tsAc0CUhpRSlGgVTQ8BaBZHQJlWJ4mkWRB1fZQoaAZoCWgPQwjeyDzyRx1wQJSGlFKUaBVNfgFoFkdAmVZldHDrJXV9lChoBmgJaA9DCDS8WYP3jHBAlIaUUpRoFUv7aBZHQJlWp33YcvN1fZQoaAZoCWgPQwjo+j4cZBdxQJSGlFKUaBVL+mgWR0CZVuLUkOZtdX2UKGgGaAloD0MITpgwmtURckCUhpRSlGgVTRIBaBZHQJlXZGgBcRl1fZQoaAZoCWgPQwibG9MTFqNxQJSGlFKUaBVL42gWR0CZV2nTiKixdX2UKGgGaAloD0MI1o13R4YScUCUhpRSlGgVTQIBaBZHQJlXtdnkDIR1fZQoaAZoCWgPQwg7URISaQJwQJSGlFKUaBVNLAFoFkdAmVgAMpgCwXV9lChoBmgJaA9DCPqAQGfS9mxAlIaUUpRoFU0PAWgWR0CZZiJm/WUbdX2UKGgGaAloD0MI1hwgmGPeckCUhpRSlGgVTTEBaBZHQJln73wkPc11fZQoaAZoCWgPQwglrfiGQg5yQJSGlFKUaBVL8mgWR0CZZ/e1a4c4dX2UKGgGaAloD0MIKjkn9lAdcUCUhpRSlGgVS/hoFkdAmWkwfQrtmnV9lChoBmgJaA9DCI20VN5ON3NAlIaUUpRoFU0XAWgWR0CZaZzv7WNFdX2UKGgGaAloD0MI/686cuRwckCUhpRSlGgVTREBaBZHQJlqZNpM6BB1fZQoaAZoCWgPQwhPdcjNMO5wQJSGlFKUaBVL/GgWR0CZancFhXr/dX2UKGgGaAloD0MISQ7Y1eQ0ckCUhpRSlGgVTSMBaBZHQJlqk4rBj4J1fZQoaAZoCWgPQwg0hjlBmwZyQJSGlFKUaBVNdgFoFkdAmWv4/qxC6nV9lChoBmgJaA9DCL5p+uxAM3FAlIaUUpRoFU0IAWgWR0CZbCcVgx8EdX2UKGgGaAloD0MIg0wyctagcUCUhpRSlGgVTT8BaBZHQJlsVpztCzF1fZQoaAZoCWgPQwjp1QClYb1xQJSGlFKUaBVNSQFoFkdAmWzde+mFanV9lChoBmgJaA9DCDy/KEH/gnBAlIaUUpRoFU0AAWgWR0CZbfIIF/x2dX2UKGgGaAloD0MIbef7qXHtcUCUhpRSlGgVTRsBaBZHQJluj+n62v11fZQoaAZoCWgPQwhGzVfJB11wQJSGlFKUaBVNBQFoFkdAmW9Pxx1gY3V9lChoBmgJaA9DCAH76NSViG9AlIaUUpRoFU0AAWgWR0CZb5JDmbLEdX2UKGgGaAloD0MINCxGXSvccECUhpRSlGgVTQIBaBZHQJlwXo/zJ6p1fZQoaAZoCWgPQwjBj2rYr+JyQJSGlFKUaBVNJQFoFkdAmXFKltTDO3V9lChoBmgJaA9DCB5U4jpGQW1AlIaUUpRoFU07AWgWR0CZcgHGCI1tdX2UKGgGaAloD0MIfEeNCfErckCUhpRSlGgVTQQBaBZHQJlyKWNWEK51fZQoaAZoCWgPQwjWjAxyV41xQJSGlFKUaBVL/WgWR0CZcl45Lh73dX2UKGgGaAloD0MI2xX6YJm/ckCUhpRSlGgVTU4CaBZHQJlybgm7aqV1fZQoaAZoCWgPQwhbsirCjUVzQJSGlFKUaBVNMwFoFkdAmXP+rlvIfnV9lChoBmgJaA9DCL2NzY7UlHBAlIaUUpRoFU0lAWgWR0CZdM5lvqC6dX2UKGgGaAloD0MIAmTo2AGkcUCUhpRSlGgVTRIBaBZHQJl0+EHt4Rp1fZQoaAZoCWgPQwhv88ZJoQFyQJSGlFKUaBVL/mgWR0CZdW7gbZOBdX2UKGgGaAloD0MIG55eKcthcUCUhpRSlGgVTZ8BaBZHQJl1vtJFspJ1fZQoaAZoCWgPQwia0vpbwq5wQJSGlFKUaBVNIwFoFkdAmXcHNs3yZ3V9lChoBmgJaA9DCFiQZiwaim5AlIaUUpRoFU1bAWgWR0CZd1FvAGjcdX2UKGgGaAloD0MITWVR2EXickCUhpRSlGgVTSABaBZHQJl33iCJ40N1fZQoaAZoCWgPQwhvDWyV4NByQJSGlFKUaBVNCQFoFkdAmXhjHXEqD3V9lChoBmgJaA9DCLr2BfTCam1AlIaUUpRoFU00AWgWR0CZeRSidrftdX2UKGgGaAloD0MIm+eIfNeacUCUhpRSlGgVTUsBaBZHQJl5elwcYIl1fZQoaAZoCWgPQwjJPsiyoJRwQJSGlFKUaBVNSgFoFkdAmXnSd4FA3XV9lChoBmgJaA9DCKYmwRvSdXBAlIaUUpRoFU0EAWgWR0CZegSH/LkkdX2UKGgGaAloD0MIGavN/+ubcECUhpRSlGgVTRgBaBZHQJl7MQQL/jt1fZQoaAZoCWgPQwhNgczOIlNxQJSGlFKUaBVNDgFoFkdAmXuby+YdAHV9lChoBmgJaA9DCAlSKXa0qXJAlIaUUpRoFU0lAWgWR0CZfGmYSg5BdX2UKGgGaAloD0MIeXk6V9QhckCUhpRSlGgVS/JoFkdAmYsVAu7HyXV9lChoBmgJaA9DCLt868O673BAlIaUUpRoFU1xAWgWR0CZixvK2a2GdX2UKGgGaAloD0MIkL+0qM+4cECUhpRSlGgVTRoBaBZHQJmLNR2r4nF1fZQoaAZoCWgPQwhoJEIj2NxvQJSGlFKUaBVNJwFoFkdAmYu42GZeA3V9lChoBmgJaA9DCL5p+uyAtlFAlIaUUpRoFUvWaBZHQJmL8/PgNw11fZQoaAZoCWgPQwh1kNeDya9zQJSGlFKUaBVNFgFoFkdAmYz1gQYk3XV9lChoBmgJaA9DCGd9yjHZs29AlIaUUpRoFU0cAWgWR0CZjeO938oAdX2UKGgGaAloD0MI/gqZK4PLckCUhpRSlGgVTV8BaBZHQJmOAYR/ViF1fZQoaAZoCWgPQwg2scBXtFxxQJSGlFKUaBVL4GgWR0CZjlbONYKZdX2UKGgGaAloD0MIiZY8nhb+cECUhpRSlGgVTScBaBZHQJmOWPMjeKt1fZQoaAZoCWgPQwibrFEPkZFwQJSGlFKUaBVNOgFoFkdAmZAJG4I8hnV9lChoBmgJaA9DCIY97fBXP3JAlIaUUpRoFU0TAWgWR0CZkGGm1pj+dX2UKGgGaAloD0MIoYSZtn80cUCUhpRSlGgVTQABaBZHQJmQ6B6KLsN1fZQoaAZoCWgPQwjsFKsG4bFvQJSGlFKUaBVNEgFoFkdAmZFL6P8ye3V9lChoBmgJaA9DCO6x9KHLwHBAlIaUUpRoFUv8aBZHQJmReYBvJil1fZQoaAZoCWgPQwjiV6zhYntyQJSGlFKUaBVNJQFoFkdAmZHKij+Jg3V9lChoBmgJaA9DCGMMrON4nG1AlIaUUpRoFU0AAWgWR0CZkcm1pj+adX2UKGgGaAloD0MIZCKl2bxYcUCUhpRSlGgVS+xoFkdAmZJIAwPAf3V9lChoBmgJaA9DCDGx+bi2bm1AlIaUUpRoFU0AAWgWR0CZk9rUsnRcdX2UKGgGaAloD0MI2LeTiPC+cUCUhpRSlGgVTR0BaBZHQJmUDs+mm+F1fZQoaAZoCWgPQwj7rZ0oSb5wQJSGlFKUaBVNNQFoFkdAmZUcinpB5XV9lChoBmgJaA9DCGtGBrmLeHBAlIaUUpRoFU1JAWgWR0CZlTwu/UONdX2UKGgGaAloD0MIo81xblODcECUhpRSlGgVTQoBaBZHQJmVycOLBKt1fZQoaAZoCWgPQwhqEyf3uzxxQJSGlFKUaBVNBAFoFkdAmZYD4xk/bHV9lChoBmgJaA9DCMwJ2uTwN1FAlIaUUpRoFUv7aBZHQJmWst/WlM11fZQoaAZoCWgPQwhdT3RdeGZxQJSGlFKUaBVL92gWR0CZlss3yZrpdX2UKGgGaAloD0MI3rBtUWYEckCUhpRSlGgVS+xoFkdAmZdxoh6jWXV9lChoBmgJaA9DCNqu0AdLmXFAlIaUUpRoFU0NAWgWR0CZl5EMb3oLdX2UKGgGaAloD0MIIxXGFgK5bkCUhpRSlGgVTToBaBZHQJmXoqJ/G2l1fZQoaAZoCWgPQwiVSQ1twLxwQJSGlFKUaBVNKAFoFkdAmZgHQtz0YnV9lChoBmgJaA9DCHYb1H7reG5AlIaUUpRoFU0UAWgWR0CZmarYGt6pdX2UKGgGaAloD0MIgZiEC3kCUkCUhpRSlGgVS+RoFkdAmZnjr7fpEHV9lChoBmgJaA9DCAcLJ2k+0HJAlIaUUpRoFUvqaBZHQJmajFPznRt1fZQoaAZoCWgPQwjGUE60azFwQJSGlFKUaBVNNQFoFkdAmZqWKqGUOnV9lChoBmgJaA9DCICbxYuFDm5AlIaUUpRoFUv7aBZHQJmbD4YaYNR1fZQoaAZoCWgPQwjLgLOUbFxyQJSGlFKUaBVNIQFoFkdAmZsPw/gR9XV9lChoBmgJaA9DCP9byY6NjHBAlIaUUpRoFU0NAWgWR0CZnCxKg7HRdX2UKGgGaAloD0MILVqAtlUYcECUhpRSlGgVTQ4BaBZHQJmdC0a6z3R1fZQoaAZoCWgPQwjeHK7VnkVzQJSGlFKUaBVNOgFoFkdAmZ0WqtHQQnV9lChoBmgJaA9DCFhyFYufKnBAlIaUUpRoFU0nAWgWR0CZnbPH1e0HdX2UKGgGaAloD0MIeo7Id+nycECUhpRSlGgVTToBaBZHQJmd6UbDMvB1fZQoaAZoCWgPQwgW31D4rDFxQJSGlFKUaBVNHQFoFkdAmZ37bg0j1XV9lChoBmgJaA9DCH0/NV665XFAlIaUUpRoFUv2aBZHQJmf7fP5YYB1fZQoaAZoCWgPQwgJGjOJOlNzQJSGlFKUaBVNJQFoFkdAmaBV6Z6Uq3V9lChoBmgJaA9DCJrv4CeO1XBAlIaUUpRoFU08AWgWR0CZoKdy1eBydX2UKGgGaAloD0MIr2Ab8aRjcUCUhpRSlGgVTRcBaBZHQJmgxXPqs2h1fZQoaAZoCWgPQwhjDoKOlrlwQJSGlFKUaBVNAAFoFkdAmaDNXLeQ+3VlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 492,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2-default/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b77be67252ce999f41ca147d7abc30b7951fe7e0a797037d992f4a4f4f608ec
|
3 |
+
size 84893
|
ppo-LunarLander-v2-default/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d5e83df868516afed0123655e93e471d2c03e2f961d7dff7ec1e941cc813711
|
3 |
+
size 43201
|
ppo-LunarLander-v2-default/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2-default/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6abb572a5ae401a0d1fbe0a510d3a9595cdcccc5073e122f881df797d4b2e06
|
3 |
+
size 244529
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 272.962115091491, "std_reward": 13.005829005588456, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-13T02:09:24.672138"}
|