AmelieSchreiber
commited on
Commit
•
216d13a
1
Parent(s):
790f81b
Upload LoRA_binding_sites_no_sweeps_v2.ipynb
Browse files
LoRA_binding_sites_no_sweeps_v2.ipynb
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"# 1. Imports\n",
|
10 |
+
"import os\n",
|
11 |
+
"os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"0\"\n",
|
12 |
+
"import numpy as np\n",
|
13 |
+
"import xml.etree.ElementTree as ET\n",
|
14 |
+
"import torch\n",
|
15 |
+
"import torch.nn as nn\n",
|
16 |
+
"from datetime import datetime\n",
|
17 |
+
"from sklearn.model_selection import train_test_split\n",
|
18 |
+
"from sklearn.utils.class_weight import compute_class_weight\n",
|
19 |
+
"from sklearn.metrics import precision_recall_fscore_support, roc_auc_score\n",
|
20 |
+
"from transformers import (\n",
|
21 |
+
" AutoModelForTokenClassification,\n",
|
22 |
+
" AutoTokenizer,\n",
|
23 |
+
" DataCollatorForTokenClassification,\n",
|
24 |
+
" TrainingArguments,\n",
|
25 |
+
" Trainer,\n",
|
26 |
+
")\n",
|
27 |
+
"from datasets import Dataset\n",
|
28 |
+
"from accelerate import Accelerator\n",
|
29 |
+
"\n",
|
30 |
+
"# Imports specific to the custom model\n",
|
31 |
+
"from peft import get_peft_config, PeftModel, PeftConfig, get_peft_model, LoraConfig, TaskType\n",
|
32 |
+
"\n",
|
33 |
+
"# 2. Setup Environment Variables and Accelerator\n",
|
34 |
+
"os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"0\"\n",
|
35 |
+
"accelerator = Accelerator()\n",
|
36 |
+
"\n",
|
37 |
+
"# 3. Helper Functions\n",
|
38 |
+
"def convert_binding_string_to_labels(binding_string):\n",
|
39 |
+
" \"\"\"Convert 'proBnd' strings into label arrays.\"\"\"\n",
|
40 |
+
" return [1 if char == '+' else 0 for char in binding_string]\n",
|
41 |
+
"\n",
|
42 |
+
"def truncate_labels(labels, max_length):\n",
|
43 |
+
" \"\"\"Truncate labels to the specified max_length.\"\"\"\n",
|
44 |
+
" return [label[:max_length] for label in labels]\n",
|
45 |
+
"\n",
|
46 |
+
"def compute_metrics(p):\n",
|
47 |
+
" \"\"\"Compute metrics for evaluation.\"\"\"\n",
|
48 |
+
" predictions, labels = p\n",
|
49 |
+
" predictions = np.argmax(predictions, axis=2)\n",
|
50 |
+
" predictions = predictions[labels != -100].flatten()\n",
|
51 |
+
" labels = labels[labels != -100].flatten()\n",
|
52 |
+
" precision, recall, f1, _ = precision_recall_fscore_support(labels, predictions, average='binary')\n",
|
53 |
+
" auc = roc_auc_score(labels, predictions)\n",
|
54 |
+
" return {'precision': precision, 'recall': recall, 'f1': f1, 'auc': auc}\n",
|
55 |
+
"\n",
|
56 |
+
"def compute_loss(model, inputs):\n",
|
57 |
+
" \"\"\"Custom compute_loss function.\"\"\"\n",
|
58 |
+
" logits = model(**inputs).logits\n",
|
59 |
+
" labels = inputs[\"labels\"]\n",
|
60 |
+
" loss_fct = nn.CrossEntropyLoss(weight=class_weights)\n",
|
61 |
+
" active_loss = inputs[\"attention_mask\"].view(-1) == 1\n",
|
62 |
+
" active_logits = logits.view(-1, model.config.num_labels)\n",
|
63 |
+
" active_labels = torch.where(\n",
|
64 |
+
" active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)\n",
|
65 |
+
" )\n",
|
66 |
+
" loss = loss_fct(active_logits, active_labels)\n",
|
67 |
+
" return loss\n",
|
68 |
+
"\n",
|
69 |
+
"# 4. Parse XML and Extract Data\n",
|
70 |
+
"tree = ET.parse('binding_sites.xml')\n",
|
71 |
+
"root = tree.getroot()\n",
|
72 |
+
"all_sequences = [partner.find(\".//proSeq\").text for partner in root.findall(\".//BindPartner\")]\n",
|
73 |
+
"all_labels = [convert_binding_string_to_labels(partner.find(\".//proBnd\").text) for partner in root.findall(\".//BindPartner\")]\n",
|
74 |
+
"\n",
|
75 |
+
"# 5. Data Splitting and Tokenization\n",
|
76 |
+
"train_sequences, test_sequences, train_labels, test_labels = train_test_split(all_sequences, all_labels, test_size=0.20, shuffle=True)\n",
|
77 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"facebook/esm2_t6_8M_UR50D\")\n",
|
78 |
+
"max_sequence_length = 1291\n",
|
79 |
+
"train_tokenized = tokenizer(train_sequences, padding=True, truncation=True, max_length=max_sequence_length, return_tensors=\"pt\", is_split_into_words=False)\n",
|
80 |
+
"test_tokenized = tokenizer(test_sequences, padding=True, truncation=True, max_length=max_sequence_length, return_tensors=\"pt\", is_split_into_words=False)\n",
|
81 |
+
"\n",
|
82 |
+
"train_labels = truncate_labels(train_labels, max_sequence_length)\n",
|
83 |
+
"test_labels = truncate_labels(test_labels, max_sequence_length)\n",
|
84 |
+
"train_dataset = Dataset.from_dict({k: v for k, v in train_tokenized.items()}).add_column(\"labels\", train_labels)\n",
|
85 |
+
"test_dataset = Dataset.from_dict({k: v for k, v in test_tokenized.items()}).add_column(\"labels\", test_labels)\n",
|
86 |
+
"\n",
|
87 |
+
"# 6. Compute Class Weights\n",
|
88 |
+
"classes = [0, 1] \n",
|
89 |
+
"flat_train_labels = [label for sublist in train_labels for label in sublist]\n",
|
90 |
+
"class_weights = compute_class_weight(class_weight='balanced', classes=classes, y=flat_train_labels)\n",
|
91 |
+
"class_weights = torch.tensor(class_weights, dtype=torch.float32).to(accelerator.device)\n",
|
92 |
+
"\n",
|
93 |
+
"# 7. Define Custom Trainer Class\n",
|
94 |
+
"class WeightedTrainer(Trainer):\n",
|
95 |
+
" def compute_loss(self, model, inputs, return_outputs=False):\n",
|
96 |
+
" outputs = model(**inputs)\n",
|
97 |
+
" loss = compute_loss(model, inputs)\n",
|
98 |
+
" return (loss, outputs) if return_outputs else loss\n",
|
99 |
+
"\n",
|
100 |
+
"# 8. Training Setup\n",
|
101 |
+
"model_checkpoint = \"facebook/esm2_t6_8M_UR50D\"\n",
|
102 |
+
"lr = 0.0005437551839696541\n",
|
103 |
+
"batch_size = 4\n",
|
104 |
+
"num_epochs = 15\n",
|
105 |
+
"\n",
|
106 |
+
"# Define labels and model\n",
|
107 |
+
"id2label = {0: \"No binding site\", 1: \"Binding site\"}\n",
|
108 |
+
"label2id = {v: k for k, v in id2label.items()}\n",
|
109 |
+
"model = AutoModelForTokenClassification.from_pretrained(model_checkpoint, num_labels=len(id2label), id2label=id2label, label2id=label2id)\n",
|
110 |
+
"\n",
|
111 |
+
"# Convert the model into a PeftModel\n",
|
112 |
+
"peft_config = LoraConfig(\n",
|
113 |
+
" task_type=TaskType.TOKEN_CLS, \n",
|
114 |
+
" inference_mode=False, \n",
|
115 |
+
" r=16, \n",
|
116 |
+
" lora_alpha=16, \n",
|
117 |
+
" target_modules=[\"query\", \"key\", \"value\"],\n",
|
118 |
+
" lora_dropout=0.1, \n",
|
119 |
+
" bias=\"all\"\n",
|
120 |
+
")\n",
|
121 |
+
"model = get_peft_model(model, peft_config)\n",
|
122 |
+
"\n",
|
123 |
+
"# Use the accelerator\n",
|
124 |
+
"model = accelerator.prepare(model)\n",
|
125 |
+
"train_dataset = accelerator.prepare(train_dataset)\n",
|
126 |
+
"test_dataset = accelerator.prepare(test_dataset)\n",
|
127 |
+
"\n",
|
128 |
+
"timestamp = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')\n",
|
129 |
+
"# Training setup\n",
|
130 |
+
"training_args = TrainingArguments(\n",
|
131 |
+
" output_dir=f\"esm2_t6_8M-lora-binding-site-classification_{timestamp}\",\n",
|
132 |
+
" learning_rate=lr,\n",
|
133 |
+
" \n",
|
134 |
+
" # Learning Rate Scheduling\n",
|
135 |
+
" lr_scheduler_type=\"linear\",\n",
|
136 |
+
" warmup_steps=500, # Number of warm-up steps; adjust based on your observations\n",
|
137 |
+
" \n",
|
138 |
+
" # Gradient Clipping\n",
|
139 |
+
" gradient_accumulation_steps=1,\n",
|
140 |
+
" max_grad_norm=1.0, # Common value, but can be adjusted based on your observations\n",
|
141 |
+
" \n",
|
142 |
+
" # Batch Size\n",
|
143 |
+
" per_device_train_batch_size=batch_size,\n",
|
144 |
+
" per_device_eval_batch_size=batch_size,\n",
|
145 |
+
" \n",
|
146 |
+
" # Number of Epochs\n",
|
147 |
+
" num_train_epochs=num_epochs,\n",
|
148 |
+
" \n",
|
149 |
+
" # Weight Decay\n",
|
150 |
+
" weight_decay=0.025, # Adjust this value based on your observations, e.g., 0.01 or 0.05\n",
|
151 |
+
" \n",
|
152 |
+
" # Early Stopping\n",
|
153 |
+
" evaluation_strategy=\"epoch\",\n",
|
154 |
+
" save_strategy=\"epoch\",\n",
|
155 |
+
" load_best_model_at_end=True,\n",
|
156 |
+
" metric_for_best_model=\"f1\", # You can also use \"eval_loss\" or \"eval_auc\" based on your preference\n",
|
157 |
+
" greater_is_better=True,\n",
|
158 |
+
" # early_stopping_patience=4, # Stops after 3 evaluations without improvement\n",
|
159 |
+
" \n",
|
160 |
+
" # Additional default arguments\n",
|
161 |
+
" push_to_hub=False, # Set to True if you want to push the model to the HuggingFace Hub\n",
|
162 |
+
" logging_dir=None, # Directory for storing logs\n",
|
163 |
+
" logging_first_step=False,\n",
|
164 |
+
" logging_steps=200, # Log every 200 steps\n",
|
165 |
+
" save_total_limit=4, # Only the last 4 models are saved. Helps in saving disk space.\n",
|
166 |
+
" no_cuda=False, # If True, will not use CUDA even if it's available\n",
|
167 |
+
" seed=42, # Random seed for reproducibility\n",
|
168 |
+
" fp16=True, # If True, uses half precision for training, which is faster and requires less memory but might be less accurate\n",
|
169 |
+
" # dataloader_num_workers=4, # Number of CPU processes for data loading\n",
|
170 |
+
")\n",
|
171 |
+
"\n",
|
172 |
+
"# Initialize Trainer\n",
|
173 |
+
"trainer = WeightedTrainer(\n",
|
174 |
+
" model=model,\n",
|
175 |
+
" args=training_args,\n",
|
176 |
+
" train_dataset=train_dataset,\n",
|
177 |
+
" eval_dataset=test_dataset,\n",
|
178 |
+
" tokenizer=tokenizer,\n",
|
179 |
+
" data_collator=DataCollatorForTokenClassification(tokenizer=tokenizer),\n",
|
180 |
+
" compute_metrics=compute_metrics\n",
|
181 |
+
")\n",
|
182 |
+
"\n",
|
183 |
+
"# 9. Train and Save Model\n",
|
184 |
+
"trainer.train()\n",
|
185 |
+
"save_path = os.path.join(\"lora_binding_sites\", f\"best_model_esm2_t6_8M_UR50D_{timestamp}\")\n",
|
186 |
+
"trainer.save_model(save_path)\n",
|
187 |
+
"tokenizer.save_pretrained(save_path)\n"
|
188 |
+
]
|
189 |
+
}
|
190 |
+
],
|
191 |
+
"metadata": {
|
192 |
+
"language_info": {
|
193 |
+
"name": "python"
|
194 |
+
},
|
195 |
+
"orig_nbformat": 4
|
196 |
+
},
|
197 |
+
"nbformat": 4,
|
198 |
+
"nbformat_minor": 2
|
199 |
+
}
|