Amiko commited on
Commit
5d4d62e
1 Parent(s): f20deb3

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.29 +/- 0.27
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84f86872dabad2010496fa0cb9e9fe0c56a7f83c9456b8a8cc87526bc4875f4b
3
+ size 107987
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7feca10c2670>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7feca1128e10>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1676528179639495716,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAVHvgPqGlVTzEDhY/VHvgPqGlVTzEDhY/VHvgPqGlVTzEDhY/VHvgPqGlVTzEDhY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtyHHv1WYBb8UbqQ+C9aOPzS57j7hK5m/xNnDvwZ91L8u6ze/R3bdPzEVYD8rHtq+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABUe+A+oaVVPMQOFj9a1bg8ZfrEOmtEaTxUe+A+oaVVPMQOFj9a1bg8ZfrEOmtEaTxUe+A+oaVVPMQOFj9a1bg8ZfrEOmtEaTxUe+A+oaVVPMQOFj9a1bg8ZfrEOmtEaTyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.43844092 0.01303998 0.5861628 ]\n [0.43844092 0.01303998 0.5861628 ]\n [0.43844092 0.01303998 0.5861628 ]\n [0.43844092 0.01303998 0.5861628 ]]",
60
+ "desired_goal": "[[-1.5557164 -0.52185565 0.32115233]\n [ 1.1159071 0.46625674 -1.1966516 ]\n [-1.5300832 -1.6600654 -0.7184323 ]\n [ 1.730172 0.87532336 -0.4260114 ]]",
61
+ "observation": "[[0.43844092 0.01303998 0.5861628 0.02256267 0.00150282 0.0142375 ]\n [0.43844092 0.01303998 0.5861628 0.02256267 0.00150282 0.0142375 ]\n [0.43844092 0.01303998 0.5861628 0.02256267 0.00150282 0.0142375 ]\n [0.43844092 0.01303998 0.5861628 0.02256267 0.00150282 0.0142375 ]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAK3EYvDmv4TxXQmU+EHPgPZU8hD2pLj08TUuIvV8ZuDzucKk9vHuwPXlXD74lSV0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.00930433 0.02754937 0.22388588]\n [ 0.10959446 0.06456868 0.01154677]\n [-0.06654987 0.02247304 0.08273493]\n [ 0.0861735 -0.13998212 0.21609934]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGqchqvBn8L+UhpRSlIwBbJRLMowBdJRHQKf44C6pYLd1fZQoaAZoCWgPQwhGDDuMSX/qv5SGlFKUaBVLMmgWR0Cn+KPKMefadX2UKGgGaAloD0MIiBHCo40j+L+UhpRSlGgVSzJoFkdAp/hngzguRXV9lChoBmgJaA9DCMfVyK60DOC/lIaUUpRoFUsyaBZHQKf4K97ngYR1fZQoaAZoCWgPQwh8mpMXmYDZv5SGlFKUaBVLMmgWR0Cn+fuQhfShdX2UKGgGaAloD0MI8rG7QEmB2L+UhpRSlGgVSzJoFkdAp/m/NPgvUXV9lChoBmgJaA9DCOtvCcA/pd+/lIaUUpRoFUsyaBZHQKf5gus90Rx1fZQoaAZoCWgPQwgS+wRQjKzuv5SGlFKUaBVLMmgWR0Cn+UcgIQe4dX2UKGgGaAloD0MIt+wQ/7Cl9L+UhpRSlGgVSzJoFkdAp/tstsenynV9lChoBmgJaA9DCNRGdTqQ9e6/lIaUUpRoFUsyaBZHQKf7MTWXkYJ1fZQoaAZoCWgPQwiq04Gsp1bfv5SGlFKUaBVLMmgWR0Cn+vW8yvcKdX2UKGgGaAloD0MIB3jSwmXV8b+UhpRSlGgVSzJoFkdAp/q6yhSLqHV9lChoBmgJaA9DCCpz843onvC/lIaUUpRoFUsyaBZHQKf9LcGkep51fZQoaAZoCWgPQwiaIsDpXbzev5SGlFKUaBVLMmgWR0Cn/PLEDQqqdX2UKGgGaAloD0MIsKw0KQVd87+UhpRSlGgVSzJoFkdAp/y3BrN4aHV9lChoBmgJaA9DCNZ0PdF14eG/lIaUUpRoFUsyaBZHQKf8fFb3XZp1fZQoaAZoCWgPQwhPCB10CUfwv5SGlFKUaBVLMmgWR0Cn/wkMTewcdX2UKGgGaAloD0MItmgB2laz0b+UhpRSlGgVSzJoFkdAp/7Nmg8KX3V9lChoBmgJaA9DCMkCJnDrrvO/lIaUUpRoFUsyaBZHQKf+klHjIaN1fZQoaAZoCWgPQwhjm1Q01v7mv5SGlFKUaBVLMmgWR0Cn/ldtVJcxdX2UKGgGaAloD0MIPu3w12SN9b+UhpRSlGgVSzJoFkdAqADtFUhmoXV9lChoBmgJaA9DCAGIu3oVGey/lIaUUpRoFUsyaBZHQKgAsam4y451fZQoaAZoCWgPQwiVSQ1tADbgv5SGlFKUaBVLMmgWR0CoAHZPVNHpdX2UKGgGaAloD0MI6IcRwqON7b+UhpRSlGgVSzJoFkdAqAA7jNpudnV9lChoBmgJaA9DCNqNPuYDguq/lIaUUpRoFUsyaBZHQKgCyhr30wt1fZQoaAZoCWgPQwichxOYTmvnv5SGlFKUaBVLMmgWR0CoAo6URnOCdX2UKGgGaAloD0MII6RuZ1956r+UhpRSlGgVSzJoFkdAqAJS+zt1IXV9lChoBmgJaA9DCNbJGYo73uO/lIaUUpRoFUsyaBZHQKgCGFPBSDR1fZQoaAZoCWgPQwhcy2Q4ns/ov5SGlFKUaBVLMmgWR0CoBK12A5JcdX2UKGgGaAloD0MI/67PnPUp2L+UhpRSlGgVSzJoFkdAqARyCcwxnHV9lChoBmgJaA9DCAISTaCIRei/lIaUUpRoFUsyaBZHQKgENrWRRuV1fZQoaAZoCWgPQwgaUG9GzVfiv5SGlFKUaBVLMmgWR0CoA/wLeANHdX2UKGgGaAloD0MIVHJO7KF967+UhpRSlGgVSzJoFkdAqAX7rkbPyHV9lChoBmgJaA9DCGhAvRk13+a/lIaUUpRoFUsyaBZHQKgFv1VYISl1fZQoaAZoCWgPQwgsuYrFbwruv5SGlFKUaBVLMmgWR0CoBYMhxHXmdX2UKGgGaAloD0MICvMeZ5ow47+UhpRSlGgVSzJoFkdAqAVHenAIp3V9lChoBmgJaA9DCKa4quy7ovG/lIaUUpRoFUsyaBZHQKgHFBacI7h1fZQoaAZoCWgPQwi2oPfGEADnv5SGlFKUaBVLMmgWR0CoBtfATIvKdX2UKGgGaAloD0MIfLYODvZm8L+UhpRSlGgVSzJoFkdAqAabeoDPnnV9lChoBmgJaA9DCHWr56T3jeK/lIaUUpRoFUsyaBZHQKgGX8VHnU51fZQoaAZoCWgPQwjxnZj1Yijgv5SGlFKUaBVLMmgWR0CoCDHXd0q6dX2UKGgGaAloD0MIDd/CuvHu6r+UhpRSlGgVSzJoFkdAqAf1eF+NLnV9lChoBmgJaA9DCHQNMzSeCPa/lIaUUpRoFUsyaBZHQKgHuRU3n6l1fZQoaAZoCWgPQwhTk+ANaVTiv5SGlFKUaBVLMmgWR0CoB31lXiiqdX2UKGgGaAloD0MIfEeNCTEX6r+UhpRSlGgVSzJoFkdAqAlJCfHxSnV9lChoBmgJaA9DCKSoM/eQsPO/lIaUUpRoFUsyaBZHQKgJDPHktEp1fZQoaAZoCWgPQwge+YOB597ov5SGlFKUaBVLMmgWR0CoCNDL8rI6dX2UKGgGaAloD0MIEqERbFz/3b+UhpRSlGgVSzJoFkdAqAiVJHy3C3V9lChoBmgJaA9DCB2wq8lTVuW/lIaUUpRoFUsyaBZHQKgKZlPJq7B1fZQoaAZoCWgPQwhszywJUFPgv5SGlFKUaBVLMmgWR0CoCin+yZ8bdX2UKGgGaAloD0MIV+wvuycP8b+UhpRSlGgVSzJoFkdAqAnt4Pf8/HV9lChoBmgJaA9DCMNmgAuyZeO/lIaUUpRoFUsyaBZHQKgJsneizs11fZQoaAZoCWgPQwikpl1MMx35v5SGlFKUaBVLMmgWR0CoC4NUGVzIdX2UKGgGaAloD0MIRaFl3T+W57+UhpRSlGgVSzJoFkdAqAtG+Eh7mnV9lChoBmgJaA9DCHcRpiiXxvC/lIaUUpRoFUsyaBZHQKgLCs/6frd1fZQoaAZoCWgPQwjgaMcNv5vrv5SGlFKUaBVLMmgWR0CoCs8afjCIdX2UKGgGaAloD0MIw6BMo8kF8r+UhpRSlGgVSzJoFkdAqAygoG6f8XV9lChoBmgJaA9DCDkLe9rhL+2/lIaUUpRoFUsyaBZHQKgMZGZNO/N1fZQoaAZoCWgPQwjhB+dTx6rlv5SGlFKUaBVLMmgWR0CoDChWYF7ldX2UKGgGaAloD0MIptb7jXbc5L+UhpRSlGgVSzJoFkdAqAvspNKywHV9lChoBmgJaA9DCDvGFRdHZfO/lIaUUpRoFUsyaBZHQKgNwlbeMyd1fZQoaAZoCWgPQwgEHa1qSQf4v5SGlFKUaBVLMmgWR0CoDYXzcynDdX2UKGgGaAloD0MI5QzFHW/y9r+UhpRSlGgVSzJoFkdAqA1Jxm03O3V9lChoBmgJaA9DCM7F3/YECe6/lIaUUpRoFUsyaBZHQKgNDj6N2kl1fZQoaAZoCWgPQwjDEDl9Pd/lv5SGlFKUaBVLMmgWR0CoDttUwSJ1dX2UKGgGaAloD0MIbM1WXvK/57+UhpRSlGgVSzJoFkdAqA6e+7Dl5nV9lChoBmgJaA9DCPzjvWplQvu/lIaUUpRoFUsyaBZHQKgOYsRQJol1fZQoaAZoCWgPQwiLGkzD8BEAwJSGlFKUaBVLMmgWR0CoDicHObAldX2UKGgGaAloD0MI6WFodXIG7b+UhpRSlGgVSzJoFkdAqA/yKiwjdHV9lChoBmgJaA9DCPEO8KSFy+y/lIaUUpRoFUsyaBZHQKgPtceKba11fZQoaAZoCWgPQwi5VKUtrjH1v5SGlFKUaBVLMmgWR0CoD3mlqJuVdX2UKGgGaAloD0MIKH0h5Lx/+b+UhpRSlGgVSzJoFkdAqA8+AI6bOXV9lChoBmgJaA9DCAu3fCQlPeq/lIaUUpRoFUsyaBZHQKgRA6DGtIV1fZQoaAZoCWgPQwhJSnoYWh3jv5SGlFKUaBVLMmgWR0CoEMc76pHadX2UKGgGaAloD0MIhgK2gxF78b+UhpRSlGgVSzJoFkdAqBCK9CeEqXV9lChoBmgJaA9DCH0G1JtRc+y/lIaUUpRoFUsyaBZHQKgQTyo4uK51fZQoaAZoCWgPQwj+ZffkYSHpv5SGlFKUaBVLMmgWR0CoEianR9gGdX2UKGgGaAloD0MI226Cb5p+9L+UhpRSlGgVSzJoFkdAqBHqc0+C9XV9lChoBmgJaA9DCJ/MP/omzee/lIaUUpRoFUsyaBZHQKgRrlmvnr91fZQoaAZoCWgPQwiTizGwjuPmv5SGlFKUaBVLMmgWR0CoEXLncL0BdX2UKGgGaAloD0MIIorJG2Dm4r+UhpRSlGgVSzJoFkdAqBNmA3DNyHV9lChoBmgJaA9DCP8j06HT8+i/lIaUUpRoFUsyaBZHQKgTKb961LJ1fZQoaAZoCWgPQwgmjjwQWSTxv5SGlFKUaBVLMmgWR0CoEu5nctXgdX2UKGgGaAloD0MI0sPQ6uSM5r+UhpRSlGgVSzJoFkdAqBKyw6hg3XV9lChoBmgJaA9DCDUmxFxSNfG/lIaUUpRoFUsyaBZHQKgUiE4ecQR1fZQoaAZoCWgPQwgSbFz/rk/iv5SGlFKUaBVLMmgWR0CoFEwFC9h7dX2UKGgGaAloD0MIk/3zNGAQ5r+UhpRSlGgVSzJoFkdAqBQPqkdmx3V9lChoBmgJaA9DCKjEdYwrLvW/lIaUUpRoFUsyaBZHQKgT0/1xsEd1fZQoaAZoCWgPQwh2pPrOL8rlv5SGlFKUaBVLMmgWR0CoFaTJQtSRdX2UKGgGaAloD0MIUtfa+1QV/L+UhpRSlGgVSzJoFkdAqBVoatLcsXV9lChoBmgJaA9DCCcyc4HLY9u/lIaUUpRoFUsyaBZHQKgVLDZ13dN1fZQoaAZoCWgPQwjT+fAsQcbrv5SGlFKUaBVLMmgWR0CoFPBvR7Z4dX2UKGgGaAloD0MIIAvRIXBk9b+UhpRSlGgVSzJoFkdAqBbBPZZjhHV9lChoBmgJaA9DCI1+NJwyN+e/lIaUUpRoFUsyaBZHQKgWhMDfWMF1fZQoaAZoCWgPQwgl6ZrJN1vyv5SGlFKUaBVLMmgWR0CoFkh/I8yOdX2UKGgGaAloD0MI2/tUFRpI87+UhpRSlGgVSzJoFkdAqBYM0BOpKnV9lChoBmgJaA9DCMUCX9Gt1/W/lIaUUpRoFUsyaBZHQKgX4MMqjJx1fZQoaAZoCWgPQwiwWS4bnfP1v5SGlFKUaBVLMmgWR0CoF6SBClabdX2UKGgGaAloD0MI/gsEATL087+UhpRSlGgVSzJoFkdAqBdofbKzRnV9lChoBmgJaA9DCJnXEYdsoOq/lIaUUpRoFUsyaBZHQKgXLPSlWOp1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f638cc69919f8d255845113741998304a0a9d011a32e4b8d8b8e42a72e93d00b
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84e906e939d794f8ad5646c589b1637a52863255b7910218eb01437f0221ba5a
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7feca10c2670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7feca1128e10>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676528179639495716, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAVHvgPqGlVTzEDhY/VHvgPqGlVTzEDhY/VHvgPqGlVTzEDhY/VHvgPqGlVTzEDhY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtyHHv1WYBb8UbqQ+C9aOPzS57j7hK5m/xNnDvwZ91L8u6ze/R3bdPzEVYD8rHtq+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABUe+A+oaVVPMQOFj9a1bg8ZfrEOmtEaTxUe+A+oaVVPMQOFj9a1bg8ZfrEOmtEaTxUe+A+oaVVPMQOFj9a1bg8ZfrEOmtEaTxUe+A+oaVVPMQOFj9a1bg8ZfrEOmtEaTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.43844092 0.01303998 0.5861628 ]\n [0.43844092 0.01303998 0.5861628 ]\n [0.43844092 0.01303998 0.5861628 ]\n [0.43844092 0.01303998 0.5861628 ]]", "desired_goal": "[[-1.5557164 -0.52185565 0.32115233]\n [ 1.1159071 0.46625674 -1.1966516 ]\n [-1.5300832 -1.6600654 -0.7184323 ]\n [ 1.730172 0.87532336 -0.4260114 ]]", "observation": "[[0.43844092 0.01303998 0.5861628 0.02256267 0.00150282 0.0142375 ]\n [0.43844092 0.01303998 0.5861628 0.02256267 0.00150282 0.0142375 ]\n [0.43844092 0.01303998 0.5861628 0.02256267 0.00150282 0.0142375 ]\n [0.43844092 0.01303998 0.5861628 0.02256267 0.00150282 0.0142375 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAK3EYvDmv4TxXQmU+EHPgPZU8hD2pLj08TUuIvV8ZuDzucKk9vHuwPXlXD74lSV0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.00930433 0.02754937 0.22388588]\n [ 0.10959446 0.06456868 0.01154677]\n [-0.06654987 0.02247304 0.08273493]\n [ 0.0861735 -0.13998212 0.21609934]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGqchqvBn8L+UhpRSlIwBbJRLMowBdJRHQKf44C6pYLd1fZQoaAZoCWgPQwhGDDuMSX/qv5SGlFKUaBVLMmgWR0Cn+KPKMefadX2UKGgGaAloD0MIiBHCo40j+L+UhpRSlGgVSzJoFkdAp/hngzguRXV9lChoBmgJaA9DCMfVyK60DOC/lIaUUpRoFUsyaBZHQKf4K97ngYR1fZQoaAZoCWgPQwh8mpMXmYDZv5SGlFKUaBVLMmgWR0Cn+fuQhfShdX2UKGgGaAloD0MI8rG7QEmB2L+UhpRSlGgVSzJoFkdAp/m/NPgvUXV9lChoBmgJaA9DCOtvCcA/pd+/lIaUUpRoFUsyaBZHQKf5gus90Rx1fZQoaAZoCWgPQwgS+wRQjKzuv5SGlFKUaBVLMmgWR0Cn+UcgIQe4dX2UKGgGaAloD0MIt+wQ/7Cl9L+UhpRSlGgVSzJoFkdAp/tstsenynV9lChoBmgJaA9DCNRGdTqQ9e6/lIaUUpRoFUsyaBZHQKf7MTWXkYJ1fZQoaAZoCWgPQwiq04Gsp1bfv5SGlFKUaBVLMmgWR0Cn+vW8yvcKdX2UKGgGaAloD0MIB3jSwmXV8b+UhpRSlGgVSzJoFkdAp/q6yhSLqHV9lChoBmgJaA9DCCpz843onvC/lIaUUpRoFUsyaBZHQKf9LcGkep51fZQoaAZoCWgPQwiaIsDpXbzev5SGlFKUaBVLMmgWR0Cn/PLEDQqqdX2UKGgGaAloD0MIsKw0KQVd87+UhpRSlGgVSzJoFkdAp/y3BrN4aHV9lChoBmgJaA9DCNZ0PdF14eG/lIaUUpRoFUsyaBZHQKf8fFb3XZp1fZQoaAZoCWgPQwhPCB10CUfwv5SGlFKUaBVLMmgWR0Cn/wkMTewcdX2UKGgGaAloD0MItmgB2laz0b+UhpRSlGgVSzJoFkdAp/7Nmg8KX3V9lChoBmgJaA9DCMkCJnDrrvO/lIaUUpRoFUsyaBZHQKf+klHjIaN1fZQoaAZoCWgPQwhjm1Q01v7mv5SGlFKUaBVLMmgWR0Cn/ldtVJcxdX2UKGgGaAloD0MIPu3w12SN9b+UhpRSlGgVSzJoFkdAqADtFUhmoXV9lChoBmgJaA9DCAGIu3oVGey/lIaUUpRoFUsyaBZHQKgAsam4y451fZQoaAZoCWgPQwiVSQ1tADbgv5SGlFKUaBVLMmgWR0CoAHZPVNHpdX2UKGgGaAloD0MI6IcRwqON7b+UhpRSlGgVSzJoFkdAqAA7jNpudnV9lChoBmgJaA9DCNqNPuYDguq/lIaUUpRoFUsyaBZHQKgCyhr30wt1fZQoaAZoCWgPQwichxOYTmvnv5SGlFKUaBVLMmgWR0CoAo6URnOCdX2UKGgGaAloD0MII6RuZ1956r+UhpRSlGgVSzJoFkdAqAJS+zt1IXV9lChoBmgJaA9DCNbJGYo73uO/lIaUUpRoFUsyaBZHQKgCGFPBSDR1fZQoaAZoCWgPQwhcy2Q4ns/ov5SGlFKUaBVLMmgWR0CoBK12A5JcdX2UKGgGaAloD0MI/67PnPUp2L+UhpRSlGgVSzJoFkdAqARyCcwxnHV9lChoBmgJaA9DCAISTaCIRei/lIaUUpRoFUsyaBZHQKgENrWRRuV1fZQoaAZoCWgPQwgaUG9GzVfiv5SGlFKUaBVLMmgWR0CoA/wLeANHdX2UKGgGaAloD0MIVHJO7KF967+UhpRSlGgVSzJoFkdAqAX7rkbPyHV9lChoBmgJaA9DCGhAvRk13+a/lIaUUpRoFUsyaBZHQKgFv1VYISl1fZQoaAZoCWgPQwgsuYrFbwruv5SGlFKUaBVLMmgWR0CoBYMhxHXmdX2UKGgGaAloD0MICvMeZ5ow47+UhpRSlGgVSzJoFkdAqAVHenAIp3V9lChoBmgJaA9DCKa4quy7ovG/lIaUUpRoFUsyaBZHQKgHFBacI7h1fZQoaAZoCWgPQwi2oPfGEADnv5SGlFKUaBVLMmgWR0CoBtfATIvKdX2UKGgGaAloD0MIfLYODvZm8L+UhpRSlGgVSzJoFkdAqAabeoDPnnV9lChoBmgJaA9DCHWr56T3jeK/lIaUUpRoFUsyaBZHQKgGX8VHnU51fZQoaAZoCWgPQwjxnZj1Yijgv5SGlFKUaBVLMmgWR0CoCDHXd0q6dX2UKGgGaAloD0MIDd/CuvHu6r+UhpRSlGgVSzJoFkdAqAf1eF+NLnV9lChoBmgJaA9DCHQNMzSeCPa/lIaUUpRoFUsyaBZHQKgHuRU3n6l1fZQoaAZoCWgPQwhTk+ANaVTiv5SGlFKUaBVLMmgWR0CoB31lXiiqdX2UKGgGaAloD0MIfEeNCTEX6r+UhpRSlGgVSzJoFkdAqAlJCfHxSnV9lChoBmgJaA9DCKSoM/eQsPO/lIaUUpRoFUsyaBZHQKgJDPHktEp1fZQoaAZoCWgPQwge+YOB597ov5SGlFKUaBVLMmgWR0CoCNDL8rI6dX2UKGgGaAloD0MIEqERbFz/3b+UhpRSlGgVSzJoFkdAqAiVJHy3C3V9lChoBmgJaA9DCB2wq8lTVuW/lIaUUpRoFUsyaBZHQKgKZlPJq7B1fZQoaAZoCWgPQwhszywJUFPgv5SGlFKUaBVLMmgWR0CoCin+yZ8bdX2UKGgGaAloD0MIV+wvuycP8b+UhpRSlGgVSzJoFkdAqAnt4Pf8/HV9lChoBmgJaA9DCMNmgAuyZeO/lIaUUpRoFUsyaBZHQKgJsneizs11fZQoaAZoCWgPQwikpl1MMx35v5SGlFKUaBVLMmgWR0CoC4NUGVzIdX2UKGgGaAloD0MIRaFl3T+W57+UhpRSlGgVSzJoFkdAqAtG+Eh7mnV9lChoBmgJaA9DCHcRpiiXxvC/lIaUUpRoFUsyaBZHQKgLCs/6frd1fZQoaAZoCWgPQwjgaMcNv5vrv5SGlFKUaBVLMmgWR0CoCs8afjCIdX2UKGgGaAloD0MIw6BMo8kF8r+UhpRSlGgVSzJoFkdAqAygoG6f8XV9lChoBmgJaA9DCDkLe9rhL+2/lIaUUpRoFUsyaBZHQKgMZGZNO/N1fZQoaAZoCWgPQwjhB+dTx6rlv5SGlFKUaBVLMmgWR0CoDChWYF7ldX2UKGgGaAloD0MIptb7jXbc5L+UhpRSlGgVSzJoFkdAqAvspNKywHV9lChoBmgJaA9DCDvGFRdHZfO/lIaUUpRoFUsyaBZHQKgNwlbeMyd1fZQoaAZoCWgPQwgEHa1qSQf4v5SGlFKUaBVLMmgWR0CoDYXzcynDdX2UKGgGaAloD0MI5QzFHW/y9r+UhpRSlGgVSzJoFkdAqA1Jxm03O3V9lChoBmgJaA9DCM7F3/YECe6/lIaUUpRoFUsyaBZHQKgNDj6N2kl1fZQoaAZoCWgPQwjDEDl9Pd/lv5SGlFKUaBVLMmgWR0CoDttUwSJ1dX2UKGgGaAloD0MIbM1WXvK/57+UhpRSlGgVSzJoFkdAqA6e+7Dl5nV9lChoBmgJaA9DCPzjvWplQvu/lIaUUpRoFUsyaBZHQKgOYsRQJol1fZQoaAZoCWgPQwiLGkzD8BEAwJSGlFKUaBVLMmgWR0CoDicHObAldX2UKGgGaAloD0MI6WFodXIG7b+UhpRSlGgVSzJoFkdAqA/yKiwjdHV9lChoBmgJaA9DCPEO8KSFy+y/lIaUUpRoFUsyaBZHQKgPtceKba11fZQoaAZoCWgPQwi5VKUtrjH1v5SGlFKUaBVLMmgWR0CoD3mlqJuVdX2UKGgGaAloD0MIKH0h5Lx/+b+UhpRSlGgVSzJoFkdAqA8+AI6bOXV9lChoBmgJaA9DCAu3fCQlPeq/lIaUUpRoFUsyaBZHQKgRA6DGtIV1fZQoaAZoCWgPQwhJSnoYWh3jv5SGlFKUaBVLMmgWR0CoEMc76pHadX2UKGgGaAloD0MIhgK2gxF78b+UhpRSlGgVSzJoFkdAqBCK9CeEqXV9lChoBmgJaA9DCH0G1JtRc+y/lIaUUpRoFUsyaBZHQKgQTyo4uK51fZQoaAZoCWgPQwj+ZffkYSHpv5SGlFKUaBVLMmgWR0CoEianR9gGdX2UKGgGaAloD0MI226Cb5p+9L+UhpRSlGgVSzJoFkdAqBHqc0+C9XV9lChoBmgJaA9DCJ/MP/omzee/lIaUUpRoFUsyaBZHQKgRrlmvnr91fZQoaAZoCWgPQwiTizGwjuPmv5SGlFKUaBVLMmgWR0CoEXLncL0BdX2UKGgGaAloD0MIIorJG2Dm4r+UhpRSlGgVSzJoFkdAqBNmA3DNyHV9lChoBmgJaA9DCP8j06HT8+i/lIaUUpRoFUsyaBZHQKgTKb961LJ1fZQoaAZoCWgPQwgmjjwQWSTxv5SGlFKUaBVLMmgWR0CoEu5nctXgdX2UKGgGaAloD0MI0sPQ6uSM5r+UhpRSlGgVSzJoFkdAqBKyw6hg3XV9lChoBmgJaA9DCDUmxFxSNfG/lIaUUpRoFUsyaBZHQKgUiE4ecQR1fZQoaAZoCWgPQwgSbFz/rk/iv5SGlFKUaBVLMmgWR0CoFEwFC9h7dX2UKGgGaAloD0MIk/3zNGAQ5r+UhpRSlGgVSzJoFkdAqBQPqkdmx3V9lChoBmgJaA9DCKjEdYwrLvW/lIaUUpRoFUsyaBZHQKgT0/1xsEd1fZQoaAZoCWgPQwh2pPrOL8rlv5SGlFKUaBVLMmgWR0CoFaTJQtSRdX2UKGgGaAloD0MIUtfa+1QV/L+UhpRSlGgVSzJoFkdAqBVoatLcsXV9lChoBmgJaA9DCCcyc4HLY9u/lIaUUpRoFUsyaBZHQKgVLDZ13dN1fZQoaAZoCWgPQwjT+fAsQcbrv5SGlFKUaBVLMmgWR0CoFPBvR7Z4dX2UKGgGaAloD0MIIAvRIXBk9b+UhpRSlGgVSzJoFkdAqBbBPZZjhHV9lChoBmgJaA9DCI1+NJwyN+e/lIaUUpRoFUsyaBZHQKgWhMDfWMF1fZQoaAZoCWgPQwgl6ZrJN1vyv5SGlFKUaBVLMmgWR0CoFkh/I8yOdX2UKGgGaAloD0MI2/tUFRpI87+UhpRSlGgVSzJoFkdAqBYM0BOpKnV9lChoBmgJaA9DCMUCX9Gt1/W/lIaUUpRoFUsyaBZHQKgX4MMqjJx1fZQoaAZoCWgPQwiwWS4bnfP1v5SGlFKUaBVLMmgWR0CoF6SBClabdX2UKGgGaAloD0MI/gsEATL087+UhpRSlGgVSzJoFkdAqBdofbKzRnV9lChoBmgJaA9DCJnXEYdsoOq/lIaUUpRoFUsyaBZHQKgXLPSlWOp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (345 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.2852288875728846, "std_reward": 0.2667707049959022, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-16T07:07:43.785509"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5fee663fdbcda765fa913dfce14db7b47e0c6618b3a87add58293222058eee56
3
+ size 3056