import torch from models import VQVAE, build_vae_var from dataset.imagenet_dataset import get_train_transforms from PIL import Image from torchvision import transforms device = 'mps' patch_nums = (1, 2, 3, 4, 5, 6, 8, 10, 13, 16) vae, var = build_vae_var( V=4096, Cvae=32, ch=160, share_quant_resi=4, device=device, patch_nums=patch_nums, num_classes=1000, depth=16, shared_aln=False, ) var_ckpt='var_d16.pth' vae_ckpt='vae_ch160v4096z32.pth' var.load_state_dict(torch.load(var_ckpt, map_location=device), strict=True) vae.load_state_dict(torch.load(vae_ckpt, map_location=device), strict=True)