Ammar-alhaj-ali commited on
Commit
e96c6be
·
1 Parent(s): d781e63

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +42 -17
README.md CHANGED
@@ -73,23 +73,48 @@ The following hyperparameters were used during training:
73
 
74
  ### Training results
75
 
76
- Step TrainLoss Valid Loss Precision Recall F1 Accuracy
77
- 250 No log 0.435449 0.854588 0.902136 0.877719 0.835968
78
- 500 0.505800 0.611310 0.869822 0.876304 0.873051 0.839177
79
- 750 0.505800 0.635022 0.879886 0.917039 0.898078 0.853085
80
- 1000 0.097000 0.765935 0.900818 0.929459 0.914914 0.860097
81
- 1250 0.097000 0.887739 0.885533 0.903130 0.894245 0.842625
82
- 1500 0.029900 0.948754 0.898018 0.923000 0.910338 0.843575
83
- 1750 0.029900 1.102811 0.900433 0.929955 0.914956 0.840128
84
- 2000 0.009700 1.039040 0.901415 0.917536 0.909404 0.852728
85
- 2250 0.009700 1.044235 0.904716 0.924491 0.914496 0.849519
86
- 2500 0.002500 1.013194 0.913086 0.918530 0.915800 0.849637
87
- 2750 0.002500 1.017520 0.908605 0.928465 0.918428 0.854986
88
- 3000 0.000900 1.029559 0.914216 0.926478 0.920306 0.859384
89
- 3250 0.000900 1.038318 0.918177 0.930949 0.924519 0.859979
90
- 3500 0.000800 1.045578 0.914216 0.926478 0.920306 0.858552
91
- 3750 0.000800 1.040568 0.913894 0.927968 0.920877 0.858433
92
- 4000 0.000700 1.041146 0.913894 0.927968 0.920877 0.8585528552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
 
94
 
95
  ### Framework versions
 
73
 
74
  ### Training results
75
 
76
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
77
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
78
+ | No log | 10.0 | 100 | 0.5238 | 0.8366 | 0.886 | 0.8606 | 0.8410 |
79
+ | No log | 20.0 | 200 | 0.6930 | 0.8751 | 0.8965 | 0.8857 | 0.8322 |
80
+ | No log | 30.0 | 300 | 0.7784 | 0.8902 | 0.908 | 0.8990 | 0.8414 |
81
+ | No log | 40.0 | 400 | 0.9056 | 0.8916 | 0.905 | 0.8983 | 0.8364 |
82
+ | 0.2429 | 50.0 | 500 | 1.0016 | 0.8954 | 0.9075 | 0.9014 | 0.8298 |
83
+ | 0.2429 | 60.0 | 600 | 1.0097 | 0.8899 | 0.897 | 0.8934 | 0.8294 |
84
+ | 0.2429 | 70.0 | 700 | 1.0722 | 0.9035 | 0.9085 | 0.9060 | 0.8315 |
85
+ | 0.2429 | 80.0 | 800 | 1.0884 | 0.8905 | 0.9105 | 0.9004 | 0.8269 |
86
+ | 0.2429 | 90.0 | 900 | 1.1292 | 0.8938 | 0.909 | 0.9013 | 0.8279 |
87
+ | 0.0098 | 100.0 | 1000 | 1.1164 | 0.9026 | 0.913 | 0.9078 | 0.8330 |
88
+ | No log | 10.0 | 100 | 0.5238 | 0.8366 | 0.886 | 0.8606 | 0.8410 |
89
+ | No log | 20.0 | 200 | 0.6930 | 0.8751 | 0.8965 | 0.8857 | 0.8322 |
90
+ | No log | 30.0 | 300 | 0.7784 | 0.8902 | 0.908 | 0.8990 | 0.8414 |
91
+ | No log | 40.0 | 400 | 0.9056 | 0.8916 | 0.905 | 0.8983 | 0.8364 |
92
+ | 0.2429 | 50.0 | 500 | 1.0016 | 0.8954 | 0.9075 | 0.9014 | 0.8298 |
93
+ | 0.2429 | 60.0 | 600 | 1.0097 | 0.8899 | 0.897 | 0.8934 | 0.8294 |
94
+ | 0.2429 | 70.0 | 700 | 1.0722 | 0.9035 | 0.9085 | 0.9060 | 0.8315 |
95
+ | 0.2429 | 80.0 | 800 | 1.0884 | 0.8905 | 0.9105 | 0.9004 | 0.8269 |
96
+ | 0.2429 | 90.0 | 900 | 1.1292 | 0.8938 | 0.909 | 0.9013 | 0.8279 |
97
+ | 0.0098 | 100.0 | 1000 | 1.1164 | 0.9026 | 0.913 | 0.9078 | 0.8330 |
98
+
99
+
100
+ [4000/4000 20:34, Epoch 53/54]
101
+ Step Training Loss Validation Loss Precision Recall F1 Accuracy
102
+ 250 No log 0.435449 0.854588 0.902136 0.877719 0.835968
103
+ 500 0.505800 0.611310 0.869822 0.876304 0.873051 0.839177
104
+ 750 0.505800 0.635022 0.879886 0.917039 0.898078 0.853085
105
+ 1000 0.097000 0.765935 0.900818 0.929459 0.914914 0.860097
106
+ 1250 0.097000 0.887739 0.885533 0.903130 0.894245 0.842625
107
+ 1500 0.029900 0.948754 0.898018 0.923000 0.910338 0.843575
108
+ 1750 0.029900 1.102811 0.900433 0.929955 0.914956 0.840128
109
+ 2000 0.009700 1.039040 0.901415 0.917536 0.909404 0.852728
110
+ 2250 0.009700 1.044235 0.904716 0.924491 0.914496 0.849519
111
+ 2500 0.002500 1.013194 0.913086 0.918530 0.915800 0.849637
112
+ 2750 0.002500 1.017520 0.908605 0.928465 0.918428 0.854986
113
+ 3000 0.000900 1.029559 0.914216 0.926478 0.920306 0.859384
114
+ 3250 0.000900 1.038318 0.918177 0.930949 0.924519 0.859979
115
+ 3500 0.000800 1.045578 0.914216 0.926478 0.920306 0.858552
116
+ 3750 0.000800 1.040568 0.913894 0.927968 0.920877 0.858433
117
+ 4000 0.000700 1.041146 0.913894 0.927968 0.920877 0.8585528552
118
 
119
 
120
  ### Framework versions