Ammar-alhaj-ali
commited on
Commit
·
db06358
1
Parent(s):
5e956a3
Update README.md
Browse files
README.md
CHANGED
@@ -13,12 +13,14 @@ tags:
|
|
13 |
#### Model description
|
14 |
**Arabic-MARBERT-Sentiment Model** is a Sentiment analysis model that was built by fine-tuning the [MARBERT](https://huggingface.co/UBC-NLP/MARBERT) model. For the fine-tuning, I used [KAUST dataset](https://www.kaggle.com/competitions/arabic-sentiment-analysis-2021-kaust), which includes 3 labels(positive,negative,and neutral).
|
15 |
|
|
|
16 |
#### How to use
|
17 |
To use the model with a transformers pipeline:
|
18 |
```python
|
19 |
-
from transformers import pipeline
|
20 |
-
model = pipeline('text-classification', model='Ammar-alhaj-ali/arabic-MARBERT-sentiment')
|
21 |
-
sentences = ['لقد استمتعت بالحفلة', 'خدمة المطعم كانت محبطة']
|
22 |
-
model(sentences)
|
23 |
[{'label': 'positive', 'score': 0.9577557444572449},
|
24 |
-
|
|
|
|
13 |
#### Model description
|
14 |
**Arabic-MARBERT-Sentiment Model** is a Sentiment analysis model that was built by fine-tuning the [MARBERT](https://huggingface.co/UBC-NLP/MARBERT) model. For the fine-tuning, I used [KAUST dataset](https://www.kaggle.com/competitions/arabic-sentiment-analysis-2021-kaust), which includes 3 labels(positive,negative,and neutral).
|
15 |
|
16 |
+
|
17 |
#### How to use
|
18 |
To use the model with a transformers pipeline:
|
19 |
```python
|
20 |
+
>>>from transformers import pipeline
|
21 |
+
>>>model = pipeline('text-classification', model='Ammar-alhaj-ali/arabic-MARBERT-sentiment')
|
22 |
+
>>>sentences = ['لقد استمتعت بالحفلة', 'خدمة المطعم كانت محبطة']
|
23 |
+
>>>model(sentences)
|
24 |
[{'label': 'positive', 'score': 0.9577557444572449},
|
25 |
+
{'label': 'negative', 'score': 0.9158180952072144}]
|
26 |
+
|