File size: 1,984 Bytes
4550dd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: muril-base-cased-indic_glue
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# muril-base-cased-indic_glue

This model is a fine-tuned version of [google/muril-base-cased](https://huggingface.co/google/muril-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6013
- Precision: 0.8504
- Recall: 0.8595
- F1: 0.8549
- Accuracy: 0.9386

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 1.6533        | 0.31  | 200  | 1.3771          | 0.7055    | 0.7392 | 0.7220 | 0.8935   |
| 1.2034        | 0.62  | 400  | 1.0141          | 0.8253    | 0.8181 | 0.8217 | 0.9245   |
| 0.9116        | 0.94  | 600  | 0.7996          | 0.8442    | 0.8286 | 0.8363 | 0.9328   |
| 0.7435        | 1.25  | 800  | 0.6917          | 0.8291    | 0.8565 | 0.8426 | 0.9325   |
| 0.645         | 1.56  | 1000 | 0.6281          | 0.8494    | 0.8530 | 0.8512 | 0.9370   |
| 0.6003        | 1.88  | 1200 | 0.6013          | 0.8504    | 0.8595 | 0.8549 | 0.9386   |


### Framework versions

- Transformers 4.29.2
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3