AnanthZeke commited on
Commit
4550dd2
1 Parent(s): d7f3aff

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: muril-base-cased-indic_glue
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # muril-base-cased-indic_glue
19
+
20
+ This model is a fine-tuned version of [google/muril-base-cased](https://huggingface.co/google/muril-base-cased) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.6013
23
+ - Precision: 0.8504
24
+ - Recall: 0.8595
25
+ - F1: 0.8549
26
+ - Accuracy: 0.9386
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 5e-05
46
+ - train_batch_size: 32
47
+ - eval_batch_size: 64
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 2
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 1.6533 | 0.31 | 200 | 1.3771 | 0.7055 | 0.7392 | 0.7220 | 0.8935 |
58
+ | 1.2034 | 0.62 | 400 | 1.0141 | 0.8253 | 0.8181 | 0.8217 | 0.9245 |
59
+ | 0.9116 | 0.94 | 600 | 0.7996 | 0.8442 | 0.8286 | 0.8363 | 0.9328 |
60
+ | 0.7435 | 1.25 | 800 | 0.6917 | 0.8291 | 0.8565 | 0.8426 | 0.9325 |
61
+ | 0.645 | 1.56 | 1000 | 0.6281 | 0.8494 | 0.8530 | 0.8512 | 0.9370 |
62
+ | 0.6003 | 1.88 | 1200 | 0.6013 | 0.8504 | 0.8595 | 0.8549 | 0.9386 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.29.2
68
+ - Pytorch 2.0.0+cu118
69
+ - Datasets 2.12.0
70
+ - Tokenizers 0.13.3