AndreasPiper commited on
Commit
c9f0629
1 Parent(s): c66185d

End of training

Browse files
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/layoutlm-base-uncased
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - funsd
7
+ model-index:
8
+ - name: layoutlm-funsd
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # layoutlm-funsd
16
+
17
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.6735
20
+ - Answer: {'precision': 0.7215601300108342, 'recall': 0.823238566131026, 'f1': 0.76905311778291, 'number': 809}
21
+ - Header: {'precision': 0.3046875, 'recall': 0.3277310924369748, 'f1': 0.31578947368421056, 'number': 119}
22
+ - Question: {'precision': 0.7800175284837861, 'recall': 0.8356807511737089, 'f1': 0.8068902991840435, 'number': 1065}
23
+ - Overall Precision: 0.7276
24
+ - Overall Recall: 0.8003
25
+ - Overall F1: 0.7622
26
+ - Overall Accuracy: 0.8080
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 3e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 15
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
57
+ | 1.7753 | 1.0 | 10 | 1.5651 | {'precision': 0.01791713325867861, 'recall': 0.019777503090234856, 'f1': 0.018801410105757928, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.253315649867374, 'recall': 0.17934272300469484, 'f1': 0.21000549752611322, 'number': 1065} | 0.1257 | 0.1039 | 0.1137 | 0.3966 |
58
+ | 1.4505 | 2.0 | 20 | 1.2385 | {'precision': 0.2100456621004566, 'recall': 0.22744128553770088, 'f1': 0.21839762611275965, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.46676197283774123, 'recall': 0.6131455399061033, 'f1': 0.5300324675324676, 'number': 1065} | 0.3657 | 0.4200 | 0.3909 | 0.6293 |
59
+ | 1.0869 | 3.0 | 30 | 0.8993 | {'precision': 0.5091496232508074, 'recall': 0.584672435105068, 'f1': 0.5443037974683544, 'number': 809} | {'precision': 0.046511627906976744, 'recall': 0.01680672268907563, 'f1': 0.02469135802469136, 'number': 119} | {'precision': 0.5931254996003198, 'recall': 0.6967136150234742, 'f1': 0.6407599309153713, 'number': 1065} | 0.5475 | 0.6106 | 0.5773 | 0.7210 |
60
+ | 0.8144 | 4.0 | 40 | 0.7685 | {'precision': 0.5755755755755756, 'recall': 0.7107540173053152, 'f1': 0.6360619469026548, 'number': 809} | {'precision': 0.15625, 'recall': 0.08403361344537816, 'f1': 0.10928961748633881, 'number': 119} | {'precision': 0.6641350210970464, 'recall': 0.7389671361502348, 'f1': 0.6995555555555556, 'number': 1065} | 0.6103 | 0.6884 | 0.6470 | 0.7562 |
61
+ | 0.6642 | 5.0 | 50 | 0.6960 | {'precision': 0.6472424557752341, 'recall': 0.7688504326328801, 'f1': 0.7028248587570621, 'number': 809} | {'precision': 0.19607843137254902, 'recall': 0.16806722689075632, 'f1': 0.18099547511312217, 'number': 119} | {'precision': 0.6795201371036846, 'recall': 0.7446009389671362, 'f1': 0.7105734767025091, 'number': 1065} | 0.6435 | 0.7200 | 0.6796 | 0.7773 |
62
+ | 0.5578 | 6.0 | 60 | 0.6555 | {'precision': 0.6557377049180327, 'recall': 0.7911001236093943, 'f1': 0.7170868347338936, 'number': 809} | {'precision': 0.19327731092436976, 'recall': 0.19327731092436976, 'f1': 0.19327731092436978, 'number': 119} | {'precision': 0.7009038619556286, 'recall': 0.8009389671361502, 'f1': 0.7475898334794041, 'number': 1065} | 0.6557 | 0.7607 | 0.7043 | 0.7920 |
63
+ | 0.484 | 7.0 | 70 | 0.6448 | {'precision': 0.6560574948665298, 'recall': 0.7898640296662547, 'f1': 0.7167694896242288, 'number': 809} | {'precision': 0.24509803921568626, 'recall': 0.21008403361344538, 'f1': 0.22624434389140272, 'number': 119} | {'precision': 0.7357859531772575, 'recall': 0.8262910798122066, 'f1': 0.7784166298098186, 'number': 1065} | 0.6796 | 0.7747 | 0.7240 | 0.8003 |
64
+ | 0.4248 | 8.0 | 80 | 0.6501 | {'precision': 0.6865828092243187, 'recall': 0.8096415327564895, 'f1': 0.7430516165626773, 'number': 809} | {'precision': 0.23972602739726026, 'recall': 0.29411764705882354, 'f1': 0.2641509433962264, 'number': 119} | {'precision': 0.7493403693931399, 'recall': 0.8, 'f1': 0.7738419618528609, 'number': 1065} | 0.6893 | 0.7737 | 0.7291 | 0.7993 |
65
+ | 0.3833 | 9.0 | 90 | 0.6427 | {'precision': 0.7062706270627063, 'recall': 0.7935723114956736, 'f1': 0.7473806752037252, 'number': 809} | {'precision': 0.2777777777777778, 'recall': 0.29411764705882354, 'f1': 0.28571428571428575, 'number': 119} | {'precision': 0.7600685518423308, 'recall': 0.8328638497652582, 'f1': 0.7948028673835125, 'number': 1065} | 0.7103 | 0.7847 | 0.7456 | 0.8069 |
66
+ | 0.3435 | 10.0 | 100 | 0.6499 | {'precision': 0.7076271186440678, 'recall': 0.8257107540173053, 'f1': 0.7621220764403879, 'number': 809} | {'precision': 0.3217391304347826, 'recall': 0.31092436974789917, 'f1': 0.3162393162393162, 'number': 119} | {'precision': 0.7789566755083996, 'recall': 0.8272300469483568, 'f1': 0.802367941712204, 'number': 1065} | 0.7242 | 0.7958 | 0.7583 | 0.8088 |
67
+ | 0.3157 | 11.0 | 110 | 0.6661 | {'precision': 0.7183406113537117, 'recall': 0.8133498145859085, 'f1': 0.7628985507246376, 'number': 809} | {'precision': 0.32231404958677684, 'recall': 0.3277310924369748, 'f1': 0.32499999999999996, 'number': 119} | {'precision': 0.7774846086191732, 'recall': 0.8300469483568075, 'f1': 0.8029064486830154, 'number': 1065} | 0.7272 | 0.7933 | 0.7588 | 0.8052 |
68
+ | 0.2921 | 12.0 | 120 | 0.6645 | {'precision': 0.7142857142857143, 'recall': 0.8281829419035847, 'f1': 0.767029192902118, 'number': 809} | {'precision': 0.30158730158730157, 'recall': 0.31932773109243695, 'f1': 0.310204081632653, 'number': 119} | {'precision': 0.7777777777777778, 'recall': 0.8347417840375587, 'f1': 0.8052536231884059, 'number': 1065} | 0.7236 | 0.8013 | 0.7605 | 0.8075 |
69
+ | 0.2805 | 13.0 | 130 | 0.6742 | {'precision': 0.7270742358078602, 'recall': 0.823238566131026, 'f1': 0.7721739130434783, 'number': 809} | {'precision': 0.29850746268656714, 'recall': 0.33613445378151263, 'f1': 0.31620553359683795, 'number': 119} | {'precision': 0.7802101576182137, 'recall': 0.8366197183098592, 'f1': 0.8074309016764839, 'number': 1065} | 0.7286 | 0.8013 | 0.7632 | 0.8074 |
70
+ | 0.2676 | 14.0 | 140 | 0.6739 | {'precision': 0.720173535791757, 'recall': 0.8207663782447466, 'f1': 0.7671865973425764, 'number': 809} | {'precision': 0.2932330827067669, 'recall': 0.3277310924369748, 'f1': 0.30952380952380953, 'number': 119} | {'precision': 0.7730434782608696, 'recall': 0.8347417840375587, 'f1': 0.8027088036117382, 'number': 1065} | 0.7220 | 0.7988 | 0.7585 | 0.8066 |
71
+ | 0.2731 | 15.0 | 150 | 0.6735 | {'precision': 0.7215601300108342, 'recall': 0.823238566131026, 'f1': 0.76905311778291, 'number': 809} | {'precision': 0.3046875, 'recall': 0.3277310924369748, 'f1': 0.31578947368421056, 'number': 119} | {'precision': 0.7800175284837861, 'recall': 0.8356807511737089, 'f1': 0.8068902991840435, 'number': 1065} | 0.7276 | 0.8003 | 0.7622 | 0.8080 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.33.0.dev0
77
+ - Pytorch 2.0.1+cpu
78
+ - Datasets 2.14.4
79
+ - Tokenizers 0.13.3
preprocessor_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_resize": true,
4
+ "feature_extractor_type": "LayoutLMv2FeatureExtractor",
5
+ "image_processor_type": "LayoutLMv2ImageProcessor",
6
+ "ocr_lang": null,
7
+ "processor_class": "LayoutLMv2Processor",
8
+ "resample": 2,
9
+ "size": {
10
+ "height": 224,
11
+ "width": 224
12
+ },
13
+ "tesseract_config": ""
14
+ }
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:65492616271130c2b1cec474c721d5e410aa6766748ebf6a336579266ad8ddea
3
  size 450601089
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0aadcdd5fb7f3abadf2bba739e4da5d5c212ec85ab9492c05761aaade862a60d
3
  size 450601089
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": null,
3
+ "apply_ocr": false,
4
+ "clean_up_tokenization_spaces": true,
5
+ "cls_token": "[CLS]",
6
+ "cls_token_box": [
7
+ 0,
8
+ 0,
9
+ 0,
10
+ 0
11
+ ],
12
+ "do_basic_tokenize": true,
13
+ "do_lower_case": true,
14
+ "mask_token": "[MASK]",
15
+ "model_max_length": 512,
16
+ "never_split": null,
17
+ "only_label_first_subword": true,
18
+ "pad_token": "[PAD]",
19
+ "pad_token_box": [
20
+ 0,
21
+ 0,
22
+ 0,
23
+ 0
24
+ ],
25
+ "pad_token_label": -100,
26
+ "processor_class": "LayoutLMv2Processor",
27
+ "sep_token": "[SEP]",
28
+ "sep_token_box": [
29
+ 1000,
30
+ 1000,
31
+ 1000,
32
+ 1000
33
+ ],
34
+ "strip_accents": null,
35
+ "tokenize_chinese_chars": true,
36
+ "tokenizer_class": "LayoutLMv2Tokenizer",
37
+ "unk_token": "[UNK]"
38
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff