Andyrasika commited on
Commit
880d6c0
·
1 Parent(s): 5b5d276

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. checkpoint-100/README.md +220 -0
  2. checkpoint-100/adapter_config.json +29 -0
  3. checkpoint-100/adapter_model.safetensors +3 -0
  4. checkpoint-100/optimizer.pt +3 -0
  5. checkpoint-100/rng_state.pth +3 -0
  6. checkpoint-100/scheduler.pt +3 -0
  7. checkpoint-100/trainer_state.json +48 -0
  8. checkpoint-100/training_args.bin +3 -0
  9. checkpoint-1000/README.md +220 -0
  10. checkpoint-1000/adapter_config.json +29 -0
  11. checkpoint-1000/adapter_model.safetensors +3 -0
  12. checkpoint-1000/optimizer.pt +3 -0
  13. checkpoint-1000/rng_state.pth +3 -0
  14. checkpoint-1000/scheduler.pt +3 -0
  15. checkpoint-1000/trainer_state.json +300 -0
  16. checkpoint-1000/training_args.bin +3 -0
  17. checkpoint-150/README.md +220 -0
  18. checkpoint-150/adapter_config.json +29 -0
  19. checkpoint-150/adapter_model.safetensors +3 -0
  20. checkpoint-150/optimizer.pt +3 -0
  21. checkpoint-150/rng_state.pth +3 -0
  22. checkpoint-150/scheduler.pt +3 -0
  23. checkpoint-150/trainer_state.json +62 -0
  24. checkpoint-150/training_args.bin +3 -0
  25. checkpoint-200/README.md +220 -0
  26. checkpoint-200/adapter_config.json +29 -0
  27. checkpoint-200/adapter_model.safetensors +3 -0
  28. checkpoint-200/optimizer.pt +3 -0
  29. checkpoint-200/rng_state.pth +3 -0
  30. checkpoint-200/scheduler.pt +3 -0
  31. checkpoint-200/trainer_state.json +76 -0
  32. checkpoint-200/training_args.bin +3 -0
  33. checkpoint-250/README.md +220 -0
  34. checkpoint-250/adapter_config.json +29 -0
  35. checkpoint-250/adapter_model.safetensors +3 -0
  36. checkpoint-250/optimizer.pt +3 -0
  37. checkpoint-250/rng_state.pth +3 -0
  38. checkpoint-250/scheduler.pt +3 -0
  39. checkpoint-250/trainer_state.json +90 -0
  40. checkpoint-250/training_args.bin +3 -0
  41. checkpoint-300/README.md +220 -0
  42. checkpoint-300/adapter_config.json +29 -0
  43. checkpoint-300/adapter_model.safetensors +3 -0
  44. checkpoint-300/optimizer.pt +3 -0
  45. checkpoint-300/rng_state.pth +3 -0
  46. checkpoint-300/scheduler.pt +3 -0
  47. checkpoint-300/trainer_state.json +104 -0
  48. checkpoint-300/training_args.bin +3 -0
  49. checkpoint-350/README.md +220 -0
  50. checkpoint-350/adapter_config.json +29 -0
checkpoint-100/README.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mistral-7B-v0.1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+
205
+ The following `bitsandbytes` quantization config was used during training:
206
+ - quant_method: bitsandbytes
207
+ - load_in_8bit: False
208
+ - load_in_4bit: True
209
+ - llm_int8_threshold: 6.0
210
+ - llm_int8_skip_modules: None
211
+ - llm_int8_enable_fp32_cpu_offload: False
212
+ - llm_int8_has_fp16_weight: False
213
+ - bnb_4bit_quant_type: nf4
214
+ - bnb_4bit_use_double_quant: True
215
+ - bnb_4bit_compute_dtype: bfloat16
216
+
217
+ ### Framework versions
218
+
219
+
220
+ - PEFT 0.6.3.dev0
checkpoint-100/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 8,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "k_proj",
20
+ "gate_proj",
21
+ "lm_head",
22
+ "v_proj",
23
+ "up_proj",
24
+ "down_proj",
25
+ "q_proj",
26
+ "o_proj"
27
+ ],
28
+ "task_type": "CAUSAL_LM"
29
+ }
checkpoint-100/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c69809f0040c8f92d4a238f6493d26dccf499247ceda24ca5edf1163b49e962e
3
+ size 85100592
checkpoint-100/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f73148243e73d765345c5789209c42faa666c876b06a6ceb5d4442ec1d88a3b
3
+ size 43126684
checkpoint-100/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c01ab4c0f45976dd0b37a94c24d44ab3264195b7231e616864a83fc30f1669a
3
+ size 14244
checkpoint-100/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f46dc04db0a603406c597c113e229228b08858bb09b49bfebd3512f1a8f3306
3
+ size 1064
checkpoint-100/trainer_state.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.15673981191222572,
5
+ "eval_steps": 50,
6
+ "global_step": 100,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.08,
13
+ "learning_rate": 2.3869346733668342e-05,
14
+ "loss": 0.7797,
15
+ "step": 50
16
+ },
17
+ {
18
+ "epoch": 0.08,
19
+ "eval_loss": 0.2723180055618286,
20
+ "eval_runtime": 135.6616,
21
+ "eval_samples_per_second": 5.263,
22
+ "eval_steps_per_second": 0.663,
23
+ "step": 50
24
+ },
25
+ {
26
+ "epoch": 0.16,
27
+ "learning_rate": 2.2613065326633167e-05,
28
+ "loss": 0.2457,
29
+ "step": 100
30
+ },
31
+ {
32
+ "epoch": 0.16,
33
+ "eval_loss": 0.22004182636737823,
34
+ "eval_runtime": 136.2348,
35
+ "eval_samples_per_second": 5.241,
36
+ "eval_steps_per_second": 0.661,
37
+ "step": 100
38
+ }
39
+ ],
40
+ "logging_steps": 50,
41
+ "max_steps": 1000,
42
+ "num_input_tokens_seen": 0,
43
+ "num_train_epochs": 2,
44
+ "save_steps": 50,
45
+ "total_flos": 1.75274075357184e+16,
46
+ "trial_name": null,
47
+ "trial_params": null
48
+ }
checkpoint-100/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f208e3c6bbc0ff595dc52e32a7309c9e57d7d78823b465b2b38edcf101eb89a
3
+ size 4600
checkpoint-1000/README.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mistral-7B-v0.1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+
205
+ The following `bitsandbytes` quantization config was used during training:
206
+ - quant_method: bitsandbytes
207
+ - load_in_8bit: False
208
+ - load_in_4bit: True
209
+ - llm_int8_threshold: 6.0
210
+ - llm_int8_skip_modules: None
211
+ - llm_int8_enable_fp32_cpu_offload: False
212
+ - llm_int8_has_fp16_weight: False
213
+ - bnb_4bit_quant_type: nf4
214
+ - bnb_4bit_use_double_quant: True
215
+ - bnb_4bit_compute_dtype: bfloat16
216
+
217
+ ### Framework versions
218
+
219
+
220
+ - PEFT 0.6.3.dev0
checkpoint-1000/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 8,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "k_proj",
20
+ "gate_proj",
21
+ "lm_head",
22
+ "v_proj",
23
+ "up_proj",
24
+ "down_proj",
25
+ "q_proj",
26
+ "o_proj"
27
+ ],
28
+ "task_type": "CAUSAL_LM"
29
+ }
checkpoint-1000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99bd78db9d9a54986e2c11ffced397ff7188be95a72fb1d58e4dbfc9a5b10756
3
+ size 85100592
checkpoint-1000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da86fb12bf85497d7d598e5053e8ac13fce7c88d2a2b25f9c6b8c2d69ef6e926
3
+ size 43127132
checkpoint-1000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1575b6cd4b082a5f2959edf357f5bf17e65f7756a963eead9feaa93dfcf50805
3
+ size 14244
checkpoint-1000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4d6d865d6518a82dd54bb09f8f02628ebe31ca8be097a65ef5c8faff7622969
3
+ size 1064
checkpoint-1000/trainer_state.json ADDED
@@ -0,0 +1,300 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.567398119122257,
5
+ "eval_steps": 50,
6
+ "global_step": 1000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.08,
13
+ "learning_rate": 2.3869346733668342e-05,
14
+ "loss": 0.7797,
15
+ "step": 50
16
+ },
17
+ {
18
+ "epoch": 0.08,
19
+ "eval_loss": 0.2723180055618286,
20
+ "eval_runtime": 135.6616,
21
+ "eval_samples_per_second": 5.263,
22
+ "eval_steps_per_second": 0.663,
23
+ "step": 50
24
+ },
25
+ {
26
+ "epoch": 0.16,
27
+ "learning_rate": 2.2613065326633167e-05,
28
+ "loss": 0.2457,
29
+ "step": 100
30
+ },
31
+ {
32
+ "epoch": 0.16,
33
+ "eval_loss": 0.22004182636737823,
34
+ "eval_runtime": 136.2348,
35
+ "eval_samples_per_second": 5.241,
36
+ "eval_steps_per_second": 0.661,
37
+ "step": 100
38
+ },
39
+ {
40
+ "epoch": 0.24,
41
+ "learning_rate": 2.135678391959799e-05,
42
+ "loss": 0.2088,
43
+ "step": 150
44
+ },
45
+ {
46
+ "epoch": 0.24,
47
+ "eval_loss": 0.19266444444656372,
48
+ "eval_runtime": 136.6465,
49
+ "eval_samples_per_second": 5.225,
50
+ "eval_steps_per_second": 0.659,
51
+ "step": 150
52
+ },
53
+ {
54
+ "epoch": 0.31,
55
+ "learning_rate": 2.0100502512562815e-05,
56
+ "loss": 0.1832,
57
+ "step": 200
58
+ },
59
+ {
60
+ "epoch": 0.31,
61
+ "eval_loss": 0.17922177910804749,
62
+ "eval_runtime": 136.7121,
63
+ "eval_samples_per_second": 5.223,
64
+ "eval_steps_per_second": 0.658,
65
+ "step": 200
66
+ },
67
+ {
68
+ "epoch": 0.39,
69
+ "learning_rate": 1.884422110552764e-05,
70
+ "loss": 0.1754,
71
+ "step": 250
72
+ },
73
+ {
74
+ "epoch": 0.39,
75
+ "eval_loss": 0.17311859130859375,
76
+ "eval_runtime": 136.3058,
77
+ "eval_samples_per_second": 5.238,
78
+ "eval_steps_per_second": 0.66,
79
+ "step": 250
80
+ },
81
+ {
82
+ "epoch": 0.47,
83
+ "learning_rate": 1.7587939698492464e-05,
84
+ "loss": 0.169,
85
+ "step": 300
86
+ },
87
+ {
88
+ "epoch": 0.47,
89
+ "eval_loss": 0.16897280514240265,
90
+ "eval_runtime": 136.923,
91
+ "eval_samples_per_second": 5.215,
92
+ "eval_steps_per_second": 0.657,
93
+ "step": 300
94
+ },
95
+ {
96
+ "epoch": 0.55,
97
+ "learning_rate": 1.6331658291457288e-05,
98
+ "loss": 0.166,
99
+ "step": 350
100
+ },
101
+ {
102
+ "epoch": 0.55,
103
+ "eval_loss": 0.1663457602262497,
104
+ "eval_runtime": 136.6033,
105
+ "eval_samples_per_second": 5.227,
106
+ "eval_steps_per_second": 0.659,
107
+ "step": 350
108
+ },
109
+ {
110
+ "epoch": 0.63,
111
+ "learning_rate": 1.507537688442211e-05,
112
+ "loss": 0.1682,
113
+ "step": 400
114
+ },
115
+ {
116
+ "epoch": 0.63,
117
+ "eval_loss": 0.16482460498809814,
118
+ "eval_runtime": 136.5801,
119
+ "eval_samples_per_second": 5.228,
120
+ "eval_steps_per_second": 0.659,
121
+ "step": 400
122
+ },
123
+ {
124
+ "epoch": 0.71,
125
+ "learning_rate": 1.3819095477386935e-05,
126
+ "loss": 0.1576,
127
+ "step": 450
128
+ },
129
+ {
130
+ "epoch": 0.71,
131
+ "eval_loss": 0.16245244443416595,
132
+ "eval_runtime": 136.7662,
133
+ "eval_samples_per_second": 5.221,
134
+ "eval_steps_per_second": 0.658,
135
+ "step": 450
136
+ },
137
+ {
138
+ "epoch": 0.78,
139
+ "learning_rate": 1.2562814070351759e-05,
140
+ "loss": 0.165,
141
+ "step": 500
142
+ },
143
+ {
144
+ "epoch": 0.78,
145
+ "eval_loss": 0.16068558394908905,
146
+ "eval_runtime": 136.6019,
147
+ "eval_samples_per_second": 5.227,
148
+ "eval_steps_per_second": 0.659,
149
+ "step": 500
150
+ },
151
+ {
152
+ "epoch": 0.86,
153
+ "learning_rate": 1.1306532663316583e-05,
154
+ "loss": 0.152,
155
+ "step": 550
156
+ },
157
+ {
158
+ "epoch": 0.86,
159
+ "eval_loss": 0.15984833240509033,
160
+ "eval_runtime": 136.8975,
161
+ "eval_samples_per_second": 5.216,
162
+ "eval_steps_per_second": 0.657,
163
+ "step": 550
164
+ },
165
+ {
166
+ "epoch": 0.94,
167
+ "learning_rate": 1.0050251256281408e-05,
168
+ "loss": 0.1563,
169
+ "step": 600
170
+ },
171
+ {
172
+ "epoch": 0.94,
173
+ "eval_loss": 0.15865428745746613,
174
+ "eval_runtime": 136.9521,
175
+ "eval_samples_per_second": 5.214,
176
+ "eval_steps_per_second": 0.657,
177
+ "step": 600
178
+ },
179
+ {
180
+ "epoch": 1.02,
181
+ "learning_rate": 8.793969849246232e-06,
182
+ "loss": 0.1477,
183
+ "step": 650
184
+ },
185
+ {
186
+ "epoch": 1.02,
187
+ "eval_loss": 0.1577940434217453,
188
+ "eval_runtime": 136.5669,
189
+ "eval_samples_per_second": 5.228,
190
+ "eval_steps_per_second": 0.659,
191
+ "step": 650
192
+ },
193
+ {
194
+ "epoch": 1.1,
195
+ "learning_rate": 7.537688442211055e-06,
196
+ "loss": 0.1491,
197
+ "step": 700
198
+ },
199
+ {
200
+ "epoch": 1.1,
201
+ "eval_loss": 0.157754048705101,
202
+ "eval_runtime": 136.107,
203
+ "eval_samples_per_second": 5.246,
204
+ "eval_steps_per_second": 0.661,
205
+ "step": 700
206
+ },
207
+ {
208
+ "epoch": 1.18,
209
+ "learning_rate": 6.2814070351758795e-06,
210
+ "loss": 0.1466,
211
+ "step": 750
212
+ },
213
+ {
214
+ "epoch": 1.18,
215
+ "eval_loss": 0.1569654941558838,
216
+ "eval_runtime": 137.1916,
217
+ "eval_samples_per_second": 5.204,
218
+ "eval_steps_per_second": 0.656,
219
+ "step": 750
220
+ },
221
+ {
222
+ "epoch": 1.25,
223
+ "learning_rate": 5.025125628140704e-06,
224
+ "loss": 0.1383,
225
+ "step": 800
226
+ },
227
+ {
228
+ "epoch": 1.25,
229
+ "eval_loss": 0.15617845952510834,
230
+ "eval_runtime": 136.7366,
231
+ "eval_samples_per_second": 5.222,
232
+ "eval_steps_per_second": 0.658,
233
+ "step": 800
234
+ },
235
+ {
236
+ "epoch": 1.33,
237
+ "learning_rate": 3.7688442211055276e-06,
238
+ "loss": 0.1417,
239
+ "step": 850
240
+ },
241
+ {
242
+ "epoch": 1.33,
243
+ "eval_loss": 0.15615858137607574,
244
+ "eval_runtime": 136.2828,
245
+ "eval_samples_per_second": 5.239,
246
+ "eval_steps_per_second": 0.66,
247
+ "step": 850
248
+ },
249
+ {
250
+ "epoch": 1.41,
251
+ "learning_rate": 2.512562814070352e-06,
252
+ "loss": 0.1374,
253
+ "step": 900
254
+ },
255
+ {
256
+ "epoch": 1.41,
257
+ "eval_loss": 0.155540332198143,
258
+ "eval_runtime": 137.0904,
259
+ "eval_samples_per_second": 5.208,
260
+ "eval_steps_per_second": 0.657,
261
+ "step": 900
262
+ },
263
+ {
264
+ "epoch": 1.49,
265
+ "learning_rate": 1.256281407035176e-06,
266
+ "loss": 0.147,
267
+ "step": 950
268
+ },
269
+ {
270
+ "epoch": 1.49,
271
+ "eval_loss": 0.15468443930149078,
272
+ "eval_runtime": 136.9218,
273
+ "eval_samples_per_second": 5.215,
274
+ "eval_steps_per_second": 0.657,
275
+ "step": 950
276
+ },
277
+ {
278
+ "epoch": 1.57,
279
+ "learning_rate": 0.0,
280
+ "loss": 0.1448,
281
+ "step": 1000
282
+ },
283
+ {
284
+ "epoch": 1.57,
285
+ "eval_loss": 0.15455935895442963,
286
+ "eval_runtime": 136.7415,
287
+ "eval_samples_per_second": 5.222,
288
+ "eval_steps_per_second": 0.658,
289
+ "step": 1000
290
+ }
291
+ ],
292
+ "logging_steps": 50,
293
+ "max_steps": 1000,
294
+ "num_input_tokens_seen": 0,
295
+ "num_train_epochs": 2,
296
+ "save_steps": 50,
297
+ "total_flos": 1.7525216609776435e+17,
298
+ "trial_name": null,
299
+ "trial_params": null
300
+ }
checkpoint-1000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f208e3c6bbc0ff595dc52e32a7309c9e57d7d78823b465b2b38edcf101eb89a
3
+ size 4600
checkpoint-150/README.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mistral-7B-v0.1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+
205
+ The following `bitsandbytes` quantization config was used during training:
206
+ - quant_method: bitsandbytes
207
+ - load_in_8bit: False
208
+ - load_in_4bit: True
209
+ - llm_int8_threshold: 6.0
210
+ - llm_int8_skip_modules: None
211
+ - llm_int8_enable_fp32_cpu_offload: False
212
+ - llm_int8_has_fp16_weight: False
213
+ - bnb_4bit_quant_type: nf4
214
+ - bnb_4bit_use_double_quant: True
215
+ - bnb_4bit_compute_dtype: bfloat16
216
+
217
+ ### Framework versions
218
+
219
+
220
+ - PEFT 0.6.3.dev0
checkpoint-150/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 8,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "k_proj",
20
+ "gate_proj",
21
+ "lm_head",
22
+ "v_proj",
23
+ "up_proj",
24
+ "down_proj",
25
+ "q_proj",
26
+ "o_proj"
27
+ ],
28
+ "task_type": "CAUSAL_LM"
29
+ }
checkpoint-150/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62a12141bb43e830a8718d52bd0d32f4b487ea502c4972da2acf46e2ab4a1aff
3
+ size 85100592
checkpoint-150/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13935a4d9f371ff3035fd3bf86cc3322a69a0f9c739f5dbef207611edaa9c922
3
+ size 43126684
checkpoint-150/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0962aa698e0e188a79f51f32c71fcc3e315e7f273b4ba096ed39831a26a8f47b
3
+ size 14244
checkpoint-150/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87a0a7460dd8b31647fa0542d6e8cdd02c31293f0704d27ec57a49b4c476aa1c
3
+ size 1064
checkpoint-150/trainer_state.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.23510971786833856,
5
+ "eval_steps": 50,
6
+ "global_step": 150,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.08,
13
+ "learning_rate": 2.3869346733668342e-05,
14
+ "loss": 0.7797,
15
+ "step": 50
16
+ },
17
+ {
18
+ "epoch": 0.08,
19
+ "eval_loss": 0.2723180055618286,
20
+ "eval_runtime": 135.6616,
21
+ "eval_samples_per_second": 5.263,
22
+ "eval_steps_per_second": 0.663,
23
+ "step": 50
24
+ },
25
+ {
26
+ "epoch": 0.16,
27
+ "learning_rate": 2.2613065326633167e-05,
28
+ "loss": 0.2457,
29
+ "step": 100
30
+ },
31
+ {
32
+ "epoch": 0.16,
33
+ "eval_loss": 0.22004182636737823,
34
+ "eval_runtime": 136.2348,
35
+ "eval_samples_per_second": 5.241,
36
+ "eval_steps_per_second": 0.661,
37
+ "step": 100
38
+ },
39
+ {
40
+ "epoch": 0.24,
41
+ "learning_rate": 2.135678391959799e-05,
42
+ "loss": 0.2088,
43
+ "step": 150
44
+ },
45
+ {
46
+ "epoch": 0.24,
47
+ "eval_loss": 0.19266444444656372,
48
+ "eval_runtime": 136.6465,
49
+ "eval_samples_per_second": 5.225,
50
+ "eval_steps_per_second": 0.659,
51
+ "step": 150
52
+ }
53
+ ],
54
+ "logging_steps": 50,
55
+ "max_steps": 1000,
56
+ "num_input_tokens_seen": 0,
57
+ "num_train_epochs": 2,
58
+ "save_steps": 50,
59
+ "total_flos": 2.62911113035776e+16,
60
+ "trial_name": null,
61
+ "trial_params": null
62
+ }
checkpoint-150/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f208e3c6bbc0ff595dc52e32a7309c9e57d7d78823b465b2b38edcf101eb89a
3
+ size 4600
checkpoint-200/README.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mistral-7B-v0.1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+
205
+ The following `bitsandbytes` quantization config was used during training:
206
+ - quant_method: bitsandbytes
207
+ - load_in_8bit: False
208
+ - load_in_4bit: True
209
+ - llm_int8_threshold: 6.0
210
+ - llm_int8_skip_modules: None
211
+ - llm_int8_enable_fp32_cpu_offload: False
212
+ - llm_int8_has_fp16_weight: False
213
+ - bnb_4bit_quant_type: nf4
214
+ - bnb_4bit_use_double_quant: True
215
+ - bnb_4bit_compute_dtype: bfloat16
216
+
217
+ ### Framework versions
218
+
219
+
220
+ - PEFT 0.6.3.dev0
checkpoint-200/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 8,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "k_proj",
20
+ "gate_proj",
21
+ "lm_head",
22
+ "v_proj",
23
+ "up_proj",
24
+ "down_proj",
25
+ "q_proj",
26
+ "o_proj"
27
+ ],
28
+ "task_type": "CAUSAL_LM"
29
+ }
checkpoint-200/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:727ef48f57d38fda1a97e3cc9c25f9341f961bd8a996adc089592cc9835622bc
3
+ size 85100592
checkpoint-200/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bff1bcaec0babeb8e55e682d9da623230c8e0c9aea5651775ad7240718d3d9c9
3
+ size 43126684
checkpoint-200/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f457ed62b714b4aba8d1b2432fdfc3a63a834912752b668d75a7da2e195a1587
3
+ size 14244
checkpoint-200/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f1b477d3bb44d9bf70633240462f7ac6e455d50eefacf5b2433c62e0cc9e80d
3
+ size 1064
checkpoint-200/trainer_state.json ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.31347962382445144,
5
+ "eval_steps": 50,
6
+ "global_step": 200,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.08,
13
+ "learning_rate": 2.3869346733668342e-05,
14
+ "loss": 0.7797,
15
+ "step": 50
16
+ },
17
+ {
18
+ "epoch": 0.08,
19
+ "eval_loss": 0.2723180055618286,
20
+ "eval_runtime": 135.6616,
21
+ "eval_samples_per_second": 5.263,
22
+ "eval_steps_per_second": 0.663,
23
+ "step": 50
24
+ },
25
+ {
26
+ "epoch": 0.16,
27
+ "learning_rate": 2.2613065326633167e-05,
28
+ "loss": 0.2457,
29
+ "step": 100
30
+ },
31
+ {
32
+ "epoch": 0.16,
33
+ "eval_loss": 0.22004182636737823,
34
+ "eval_runtime": 136.2348,
35
+ "eval_samples_per_second": 5.241,
36
+ "eval_steps_per_second": 0.661,
37
+ "step": 100
38
+ },
39
+ {
40
+ "epoch": 0.24,
41
+ "learning_rate": 2.135678391959799e-05,
42
+ "loss": 0.2088,
43
+ "step": 150
44
+ },
45
+ {
46
+ "epoch": 0.24,
47
+ "eval_loss": 0.19266444444656372,
48
+ "eval_runtime": 136.6465,
49
+ "eval_samples_per_second": 5.225,
50
+ "eval_steps_per_second": 0.659,
51
+ "step": 150
52
+ },
53
+ {
54
+ "epoch": 0.31,
55
+ "learning_rate": 2.0100502512562815e-05,
56
+ "loss": 0.1832,
57
+ "step": 200
58
+ },
59
+ {
60
+ "epoch": 0.31,
61
+ "eval_loss": 0.17922177910804749,
62
+ "eval_runtime": 136.7121,
63
+ "eval_samples_per_second": 5.223,
64
+ "eval_steps_per_second": 0.658,
65
+ "step": 200
66
+ }
67
+ ],
68
+ "logging_steps": 50,
69
+ "max_steps": 1000,
70
+ "num_input_tokens_seen": 0,
71
+ "num_train_epochs": 2,
72
+ "save_steps": 50,
73
+ "total_flos": 3.50548150714368e+16,
74
+ "trial_name": null,
75
+ "trial_params": null
76
+ }
checkpoint-200/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f208e3c6bbc0ff595dc52e32a7309c9e57d7d78823b465b2b38edcf101eb89a
3
+ size 4600
checkpoint-250/README.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mistral-7B-v0.1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+
205
+ The following `bitsandbytes` quantization config was used during training:
206
+ - quant_method: bitsandbytes
207
+ - load_in_8bit: False
208
+ - load_in_4bit: True
209
+ - llm_int8_threshold: 6.0
210
+ - llm_int8_skip_modules: None
211
+ - llm_int8_enable_fp32_cpu_offload: False
212
+ - llm_int8_has_fp16_weight: False
213
+ - bnb_4bit_quant_type: nf4
214
+ - bnb_4bit_use_double_quant: True
215
+ - bnb_4bit_compute_dtype: bfloat16
216
+
217
+ ### Framework versions
218
+
219
+
220
+ - PEFT 0.6.3.dev0
checkpoint-250/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 8,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "k_proj",
20
+ "gate_proj",
21
+ "lm_head",
22
+ "v_proj",
23
+ "up_proj",
24
+ "down_proj",
25
+ "q_proj",
26
+ "o_proj"
27
+ ],
28
+ "task_type": "CAUSAL_LM"
29
+ }
checkpoint-250/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ed08f577f810bfea2a625ae11c709cdfa654427fcce0a09e85e6fec516f73f5
3
+ size 85100592
checkpoint-250/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3bc2666ba548997464a7639f9dc6ecfd18172c99544643445cc9830bd28aa48
3
+ size 43126684
checkpoint-250/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e90eec24f22ad8e38976f35fa28211eae70ff1aac715343277c0bc4b2839fa3
3
+ size 14244
checkpoint-250/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:09471b95cb193b326e2ae9278591cdf878ced8cb70ac85a4cb6b83f68d62fc51
3
+ size 1064
checkpoint-250/trainer_state.json ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.39184952978056425,
5
+ "eval_steps": 50,
6
+ "global_step": 250,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.08,
13
+ "learning_rate": 2.3869346733668342e-05,
14
+ "loss": 0.7797,
15
+ "step": 50
16
+ },
17
+ {
18
+ "epoch": 0.08,
19
+ "eval_loss": 0.2723180055618286,
20
+ "eval_runtime": 135.6616,
21
+ "eval_samples_per_second": 5.263,
22
+ "eval_steps_per_second": 0.663,
23
+ "step": 50
24
+ },
25
+ {
26
+ "epoch": 0.16,
27
+ "learning_rate": 2.2613065326633167e-05,
28
+ "loss": 0.2457,
29
+ "step": 100
30
+ },
31
+ {
32
+ "epoch": 0.16,
33
+ "eval_loss": 0.22004182636737823,
34
+ "eval_runtime": 136.2348,
35
+ "eval_samples_per_second": 5.241,
36
+ "eval_steps_per_second": 0.661,
37
+ "step": 100
38
+ },
39
+ {
40
+ "epoch": 0.24,
41
+ "learning_rate": 2.135678391959799e-05,
42
+ "loss": 0.2088,
43
+ "step": 150
44
+ },
45
+ {
46
+ "epoch": 0.24,
47
+ "eval_loss": 0.19266444444656372,
48
+ "eval_runtime": 136.6465,
49
+ "eval_samples_per_second": 5.225,
50
+ "eval_steps_per_second": 0.659,
51
+ "step": 150
52
+ },
53
+ {
54
+ "epoch": 0.31,
55
+ "learning_rate": 2.0100502512562815e-05,
56
+ "loss": 0.1832,
57
+ "step": 200
58
+ },
59
+ {
60
+ "epoch": 0.31,
61
+ "eval_loss": 0.17922177910804749,
62
+ "eval_runtime": 136.7121,
63
+ "eval_samples_per_second": 5.223,
64
+ "eval_steps_per_second": 0.658,
65
+ "step": 200
66
+ },
67
+ {
68
+ "epoch": 0.39,
69
+ "learning_rate": 1.884422110552764e-05,
70
+ "loss": 0.1754,
71
+ "step": 250
72
+ },
73
+ {
74
+ "epoch": 0.39,
75
+ "eval_loss": 0.17311859130859375,
76
+ "eval_runtime": 136.3058,
77
+ "eval_samples_per_second": 5.238,
78
+ "eval_steps_per_second": 0.66,
79
+ "step": 250
80
+ }
81
+ ],
82
+ "logging_steps": 50,
83
+ "max_steps": 1000,
84
+ "num_input_tokens_seen": 0,
85
+ "num_train_epochs": 2,
86
+ "save_steps": 50,
87
+ "total_flos": 4.3818518839296e+16,
88
+ "trial_name": null,
89
+ "trial_params": null
90
+ }
checkpoint-250/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f208e3c6bbc0ff595dc52e32a7309c9e57d7d78823b465b2b38edcf101eb89a
3
+ size 4600
checkpoint-300/README.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mistral-7B-v0.1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+
205
+ The following `bitsandbytes` quantization config was used during training:
206
+ - quant_method: bitsandbytes
207
+ - load_in_8bit: False
208
+ - load_in_4bit: True
209
+ - llm_int8_threshold: 6.0
210
+ - llm_int8_skip_modules: None
211
+ - llm_int8_enable_fp32_cpu_offload: False
212
+ - llm_int8_has_fp16_weight: False
213
+ - bnb_4bit_quant_type: nf4
214
+ - bnb_4bit_use_double_quant: True
215
+ - bnb_4bit_compute_dtype: bfloat16
216
+
217
+ ### Framework versions
218
+
219
+
220
+ - PEFT 0.6.3.dev0
checkpoint-300/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 8,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "k_proj",
20
+ "gate_proj",
21
+ "lm_head",
22
+ "v_proj",
23
+ "up_proj",
24
+ "down_proj",
25
+ "q_proj",
26
+ "o_proj"
27
+ ],
28
+ "task_type": "CAUSAL_LM"
29
+ }
checkpoint-300/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9dcad4faf20f41404b8cfead079476e1b9e12179561ce60578ab234a8eebc2d
3
+ size 85100592
checkpoint-300/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d36d7e08c0b28b1bf2a8b6580de32ebb04c5aa47ad21e5dc169f5b965a4ae42
3
+ size 43127132
checkpoint-300/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b609533938f675544d701f32c5dfd0943480eeae212bb01e28566ca924db586f
3
+ size 14244
checkpoint-300/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25d0ec4220fe093365424ee63188b9cc5436640be7c2cb84202c87d53f32aeaf
3
+ size 1064
checkpoint-300/trainer_state.json ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.4702194357366771,
5
+ "eval_steps": 50,
6
+ "global_step": 300,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.08,
13
+ "learning_rate": 2.3869346733668342e-05,
14
+ "loss": 0.7797,
15
+ "step": 50
16
+ },
17
+ {
18
+ "epoch": 0.08,
19
+ "eval_loss": 0.2723180055618286,
20
+ "eval_runtime": 135.6616,
21
+ "eval_samples_per_second": 5.263,
22
+ "eval_steps_per_second": 0.663,
23
+ "step": 50
24
+ },
25
+ {
26
+ "epoch": 0.16,
27
+ "learning_rate": 2.2613065326633167e-05,
28
+ "loss": 0.2457,
29
+ "step": 100
30
+ },
31
+ {
32
+ "epoch": 0.16,
33
+ "eval_loss": 0.22004182636737823,
34
+ "eval_runtime": 136.2348,
35
+ "eval_samples_per_second": 5.241,
36
+ "eval_steps_per_second": 0.661,
37
+ "step": 100
38
+ },
39
+ {
40
+ "epoch": 0.24,
41
+ "learning_rate": 2.135678391959799e-05,
42
+ "loss": 0.2088,
43
+ "step": 150
44
+ },
45
+ {
46
+ "epoch": 0.24,
47
+ "eval_loss": 0.19266444444656372,
48
+ "eval_runtime": 136.6465,
49
+ "eval_samples_per_second": 5.225,
50
+ "eval_steps_per_second": 0.659,
51
+ "step": 150
52
+ },
53
+ {
54
+ "epoch": 0.31,
55
+ "learning_rate": 2.0100502512562815e-05,
56
+ "loss": 0.1832,
57
+ "step": 200
58
+ },
59
+ {
60
+ "epoch": 0.31,
61
+ "eval_loss": 0.17922177910804749,
62
+ "eval_runtime": 136.7121,
63
+ "eval_samples_per_second": 5.223,
64
+ "eval_steps_per_second": 0.658,
65
+ "step": 200
66
+ },
67
+ {
68
+ "epoch": 0.39,
69
+ "learning_rate": 1.884422110552764e-05,
70
+ "loss": 0.1754,
71
+ "step": 250
72
+ },
73
+ {
74
+ "epoch": 0.39,
75
+ "eval_loss": 0.17311859130859375,
76
+ "eval_runtime": 136.3058,
77
+ "eval_samples_per_second": 5.238,
78
+ "eval_steps_per_second": 0.66,
79
+ "step": 250
80
+ },
81
+ {
82
+ "epoch": 0.47,
83
+ "learning_rate": 1.7587939698492464e-05,
84
+ "loss": 0.169,
85
+ "step": 300
86
+ },
87
+ {
88
+ "epoch": 0.47,
89
+ "eval_loss": 0.16897280514240265,
90
+ "eval_runtime": 136.923,
91
+ "eval_samples_per_second": 5.215,
92
+ "eval_steps_per_second": 0.657,
93
+ "step": 300
94
+ }
95
+ ],
96
+ "logging_steps": 50,
97
+ "max_steps": 1000,
98
+ "num_input_tokens_seen": 0,
99
+ "num_train_epochs": 2,
100
+ "save_steps": 50,
101
+ "total_flos": 5.25822226071552e+16,
102
+ "trial_name": null,
103
+ "trial_params": null
104
+ }
checkpoint-300/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f208e3c6bbc0ff595dc52e32a7309c9e57d7d78823b465b2b38edcf101eb89a
3
+ size 4600
checkpoint-350/README.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mistral-7B-v0.1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+
205
+ The following `bitsandbytes` quantization config was used during training:
206
+ - quant_method: bitsandbytes
207
+ - load_in_8bit: False
208
+ - load_in_4bit: True
209
+ - llm_int8_threshold: 6.0
210
+ - llm_int8_skip_modules: None
211
+ - llm_int8_enable_fp32_cpu_offload: False
212
+ - llm_int8_has_fp16_weight: False
213
+ - bnb_4bit_quant_type: nf4
214
+ - bnb_4bit_use_double_quant: True
215
+ - bnb_4bit_compute_dtype: bfloat16
216
+
217
+ ### Framework versions
218
+
219
+
220
+ - PEFT 0.6.3.dev0
checkpoint-350/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 8,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "k_proj",
20
+ "gate_proj",
21
+ "lm_head",
22
+ "v_proj",
23
+ "up_proj",
24
+ "down_proj",
25
+ "q_proj",
26
+ "o_proj"
27
+ ],
28
+ "task_type": "CAUSAL_LM"
29
+ }