File size: 8,423 Bytes
0dc050d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bed16b1
 
 
 
 
 
 
 
0dc050d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bed16b1
0dc050d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bed16b1
 
0dc050d
 
 
 
 
 
 
bed16b1
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
from dataclasses import dataclass
from typing import Union, Type

import torch
from transformers.modeling_outputs import SequenceClassifierOutput
from transformers import (
    PreTrainedModel,
    PretrainedConfig,
    WavLMConfig,
    BertConfig,
    WavLMModel,
    BertModel,
    Wav2Vec2Config,
    Wav2Vec2Model
)

from transformers.models.wav2vec2.modeling_wav2vec2 import (
    Wav2Vec2Encoder,
    Wav2Vec2EncoderStableLayerNorm,
    Wav2Vec2FeatureEncoder
)

from transformers.models.bert.modeling_bert import BertEncoder


class MultiModalConfig(PretrainedConfig):
    """Base class for multimodal configs"""
    def __init__(self, **kwargs):
        super().__init__(**kwargs)


class Wav2Vec2BertConfig(MultiModalConfig):
    ...


class BaseClassificationModel(PreTrainedModel):
    config: Type[Union[PretrainedConfig, None]] = None

    def compute_loss(self, logits, labels):
        """Compute loss

        Args:
            logits (torch.FloatTensor): logits
            labels (torch.LongTensor): labels

        Returns:
            torch.FloatTensor: loss

        Raises:
            ValueError: Invalid number of labels
        """
        if self.config.problem_type is None:
            if self.num_labels == 1:
                self.config.problem_type = "regression"
            elif self.num_labels > 1:
                self.config.problem_type = "single_label_classification"
            else:
                raise ValueError("Invalid number of labels: {}".format(self.num_labels))

        if self.config.problem_type == "single_label_classification":
            loss_fct = torch.nn.CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))

        elif self.config.problem_type == "multi_label_classification":
            loss_fct = torch.nn.BCEWithLogitsLoss()
            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1, self.num_labels))

        elif self.config.problem_type == "regression":
            loss_fct = torch.nn.MSELoss()
            loss = loss_fct(logits.view(-1), labels.view(-1))
        else:
            raise ValueError("Problem_type {} not supported".format(self.config.problem_type))

        return loss

    @staticmethod
    def merged_strategy(
            hidden_states,
            mode="mean"
    ):
        """Merged strategy for pooling

        Args:
            hidden_states (torch.FloatTensor): hidden states
            mode (str, optional): pooling mode. Defaults to "mean".

        Returns:
            torch.FloatTensor: pooled hidden states
        """
        if mode == "mean":
            outputs = torch.mean(hidden_states, dim=1)
        elif mode == "sum":
            outputs = torch.sum(hidden_states, dim=1)
        elif mode == "max":
            outputs = torch.max(hidden_states, dim=1)[0]
        else:
            raise Exception(
                "The pooling method hasn't been defined! Your pooling mode must be one of these ['mean', 'sum', 'max']")

        return outputs


class AudioTextModelForSequenceBaseClassification(BaseClassificationModel):
    config_class = MultiModalConfig

    def __init__(self, config):
        """
        Args:
            config (MultiModalConfig): config

        Attributes:
            config (MultiModalConfig): config
            num_labels (int): number of labels
            audio_config (Union[PretrainedConfig, None]): audio config
            text_config (Union[PretrainedConfig, None]): text config
            audio_model (Union[PreTrainedModel, None]): audio model
            text_model (Union[PreTrainedModel, None]): text model
            classifier (Union[torch.nn.Linear, None]): classifier
        """
        super().__init__(config)
        self.config = config
        self.num_labels = self.config.num_labels
        self.audio_config: Union[PretrainedConfig, None] = None
        self.text_config: Union[PretrainedConfig, None] = None
        self.audio_model: Union[PreTrainedModel, None] = None
        self.text_model: Union[PreTrainedModel, None] = None
        self.classifier: Union[torch.nn.Linear, None] = None

    def forward(
            self,
            input_ids=None,
            input_values=None,
            text_attention_mask=None,
            audio_attention_mask=None,
            token_type_ids=None,
            position_ids=None,
            head_mask=None,
            inputs_embeds=None,
            labels=None,
            output_attentions=None,
            output_hidden_states=None,
            return_dict=True,
    ):
        """Forward method for multimodal model for sequence classification task (e.g. text + audio)

        Args:
            input_ids (torch.LongTensor, optional): input ids. Defaults to None.
            input_values (torch.FloatTensor, optional): input values. Defaults to None.
            text_attention_mask (torch.LongTensor, optional): text attention mask. Defaults to None.
            audio_attention_mask (torch.LongTensor, optional): audio attention mask. Defaults to None.
            token_type_ids (torch.LongTensor, optional): token type ids. Defaults to None.
            position_ids (torch.LongTensor, optional): position ids. Defaults to None.
            head_mask (torch.FloatTensor, optional): head mask. Defaults to None.
            inputs_embeds (torch.FloatTensor, optional): inputs embeds. Defaults to None.
            labels (torch.LongTensor, optional): labels. Defaults to None.
            output_attentions (bool, optional): output attentions. Defaults to None.
            output_hidden_states (bool, optional): output hidden states. Defaults to None.
            return_dict (bool, optional): return dict. Defaults to True.

        Returns:
            torch.FloatTensor: logits
        """
        audio_output = self.audio_model(
            input_values=input_values,
            attention_mask=audio_attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict
        )
        text_output = self.text_model(
            input_ids=input_ids,
            attention_mask=text_attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        audio_mean = self.merged_strategy(audio_output.last_hidden_state, mode=self.config.pooling_mode)

        pooled_output = torch.cat(
            (audio_mean, text_output.pooler_output), dim=1
        )
        logits = self.classifier(pooled_output)
        loss = None

        if labels is not None:
            loss = self.compute_loss(logits, labels)

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits
        )


class Wav2Vec2BertForSequenceClassification(AudioTextModelForSequenceBaseClassification):
    """
    Wav2Vec2BertForSequenceClassification is a model for sequence classification task
     (e.g. sentiment analysis, text classification, etc.)

    Args:
        config (Wav2Vec2BertConfig): config

    Attributes:
        config (Wav2Vec2BertConfig): config
        audio_config (Wav2Vec2Config): wav2vec2 config
        text_config (BertConfig): bert config
        audio_model (Wav2Vec2Model): wav2vec2 model
        text_model (BertModel): bert model
        classifier (torch.nn.Linear): classifier
    """
    def __init__(self, config):
        super().__init__(config)
        self.supports_gradient_checkpointing = getattr(config, "gradient_checkpointing", True)

        self.audio_config = Wav2Vec2Config.from_dict(self.config.Wav2Vec2Model)
        self.text_config = BertConfig.from_dict(self.config.BertModel)
        self.audio_model = Wav2Vec2Model(self.audio_config)
        self.text_model = BertModel(self.text_config)
        self.classifier = torch.nn.Linear(
            self.audio_config.hidden_size + self.text_config.hidden_size, self.num_labels
        )
        self.init_weights()

    @staticmethod
    def _set_gradient_checkpointing(module, value=False):
        if isinstance(module, (Wav2Vec2Encoder, Wav2Vec2EncoderStableLayerNorm, Wav2Vec2FeatureEncoder, BertEncoder)):
            module.gradient_checkpointing = value