from dataclasses import dataclass from typing import Union, Type import torch from transformers.modeling_outputs import SequenceClassifierOutput from transformers import ( PreTrainedModel, PretrainedConfig, WavLMConfig, BertConfig, WavLMModel, BertModel, Wav2Vec2Config, Wav2Vec2Model ) from transformers.models.wav2vec2.modeling_wav2vec2 import ( Wav2Vec2Encoder, Wav2Vec2EncoderStableLayerNorm, Wav2Vec2FeatureEncoder ) from transformers.models.bert.modeling_bert import BertEncoder class MultiModalConfig(PretrainedConfig): """Base class for multimodal configs""" def __init__(self, **kwargs): super().__init__(**kwargs) class Wav2Vec2BertConfig(MultiModalConfig): ... class BaseClassificationModel(PreTrainedModel): config: Type[Union[PretrainedConfig, None]] = None def compute_loss(self, logits, labels): """Compute loss Args: logits (torch.FloatTensor): logits labels (torch.LongTensor): labels Returns: torch.FloatTensor: loss Raises: ValueError: Invalid number of labels """ if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1: self.config.problem_type = "single_label_classification" else: raise ValueError("Invalid number of labels: {}".format(self.num_labels)) if self.config.problem_type == "single_label_classification": loss_fct = torch.nn.CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = torch.nn.BCEWithLogitsLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1, self.num_labels)) elif self.config.problem_type == "regression": loss_fct = torch.nn.MSELoss() loss = loss_fct(logits.view(-1), labels.view(-1)) else: raise ValueError("Problem_type {} not supported".format(self.config.problem_type)) return loss @staticmethod def merged_strategy( hidden_states, mode="mean" ): """Merged strategy for pooling Args: hidden_states (torch.FloatTensor): hidden states mode (str, optional): pooling mode. Defaults to "mean". Returns: torch.FloatTensor: pooled hidden states """ if mode == "mean": outputs = torch.mean(hidden_states, dim=1) elif mode == "sum": outputs = torch.sum(hidden_states, dim=1) elif mode == "max": outputs = torch.max(hidden_states, dim=1)[0] else: raise Exception( "The pooling method hasn't been defined! Your pooling mode must be one of these ['mean', 'sum', 'max']") return outputs class AudioTextModelForSequenceBaseClassification(BaseClassificationModel): config_class = MultiModalConfig def __init__(self, config): """ Args: config (MultiModalConfig): config Attributes: config (MultiModalConfig): config num_labels (int): number of labels audio_config (Union[PretrainedConfig, None]): audio config text_config (Union[PretrainedConfig, None]): text config audio_model (Union[PreTrainedModel, None]): audio model text_model (Union[PreTrainedModel, None]): text model classifier (Union[torch.nn.Linear, None]): classifier """ super().__init__(config) self.config = config self.num_labels = self.config.num_labels self.audio_config: Union[PretrainedConfig, None] = None self.text_config: Union[PretrainedConfig, None] = None self.audio_model: Union[PreTrainedModel, None] = None self.text_model: Union[PreTrainedModel, None] = None self.classifier: Union[torch.nn.Linear, None] = None def forward( self, input_ids=None, input_values=None, text_attention_mask=None, audio_attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=True, ): """Forward method for multimodal model for sequence classification task (e.g. text + audio) Args: input_ids (torch.LongTensor, optional): input ids. Defaults to None. input_values (torch.FloatTensor, optional): input values. Defaults to None. text_attention_mask (torch.LongTensor, optional): text attention mask. Defaults to None. audio_attention_mask (torch.LongTensor, optional): audio attention mask. Defaults to None. token_type_ids (torch.LongTensor, optional): token type ids. Defaults to None. position_ids (torch.LongTensor, optional): position ids. Defaults to None. head_mask (torch.FloatTensor, optional): head mask. Defaults to None. inputs_embeds (torch.FloatTensor, optional): inputs embeds. Defaults to None. labels (torch.LongTensor, optional): labels. Defaults to None. output_attentions (bool, optional): output attentions. Defaults to None. output_hidden_states (bool, optional): output hidden states. Defaults to None. return_dict (bool, optional): return dict. Defaults to True. Returns: torch.FloatTensor: logits """ audio_output = self.audio_model( input_values=input_values, attention_mask=audio_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict ) text_output = self.text_model( input_ids=input_ids, attention_mask=text_attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) audio_mean = self.merged_strategy(audio_output.last_hidden_state, mode=self.config.pooling_mode) pooled_output = torch.cat( (audio_mean, text_output.pooler_output), dim=1 ) logits = self.classifier(pooled_output) loss = None if labels is not None: loss = self.compute_loss(logits, labels) return SequenceClassifierOutput( loss=loss, logits=logits ) class Wav2Vec2BertForSequenceClassification(AudioTextModelForSequenceBaseClassification): """ Wav2Vec2BertForSequenceClassification is a model for sequence classification task (e.g. sentiment analysis, text classification, etc.) Args: config (Wav2Vec2BertConfig): config Attributes: config (Wav2Vec2BertConfig): config audio_config (Wav2Vec2Config): wav2vec2 config text_config (BertConfig): bert config audio_model (Wav2Vec2Model): wav2vec2 model text_model (BertModel): bert model classifier (torch.nn.Linear): classifier """ def __init__(self, config): super().__init__(config) self.supports_gradient_checkpointing = getattr(config, "gradient_checkpointing", True) self.audio_config = Wav2Vec2Config.from_dict(self.config.Wav2Vec2Model) self.text_config = BertConfig.from_dict(self.config.BertModel) self.audio_model = Wav2Vec2Model(self.audio_config) self.text_model = BertModel(self.text_config) self.classifier = torch.nn.Linear( self.audio_config.hidden_size + self.text_config.hidden_size, self.num_labels ) self.init_weights() @staticmethod def _set_gradient_checkpointing(module, value=False): if isinstance(module, (Wav2Vec2Encoder, Wav2Vec2EncoderStableLayerNorm, Wav2Vec2FeatureEncoder, BertEncoder)): module.gradient_checkpointing = value