File size: 12,675 Bytes
2a5b05e
 
 
 
 
 
 
 
 
 
 
 
 
 
becd3e3
 
 
 
 
 
 
 
2a5b05e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f85ba2b
2a5b05e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
becd3e3
 
2a5b05e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
becd3e3
 
 
 
 
2a5b05e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
from typing import Union, Type
import torch
from transformers.modeling_outputs import SequenceClassifierOutput
from transformers import (
    PreTrainedModel,
    PretrainedConfig,
    WavLMConfig,
    BertConfig,
    WavLMModel,
    BertModel,
    Wav2Vec2Config,
    Wav2Vec2Model
)

from transformers.models.wavlm.modeling_wavlm import (
    WavLMEncoder,
    WavLMEncoderStableLayerNorm,
    WavLMFeatureEncoder
)

from transformers.models.bert.modeling_bert import BertEncoder


class MultiModalConfig(PretrainedConfig):
    """Base class for multimodal configs"""
    def __init__(self, **kwargs):
        super().__init__(**kwargs)


class WavLMBertConfig(MultiModalConfig):
    ...


class BaseClassificationModel(PreTrainedModel):
    config: Type[Union[PretrainedConfig, None]] = None

    def compute_loss(self, logits, labels):
        """Compute loss

        Args:
            logits (torch.FloatTensor): logits
            labels (torch.LongTensor): labels

        Returns:
            torch.FloatTensor: loss

        Raises:
            ValueError: Invalid number of labels
        """
        if self.config.problem_type is None:
            if self.num_labels == 1:
                self.config.problem_type = "regression"
            elif self.num_labels > 1:
                self.config.problem_type = "single_label_classification"
            else:
                raise ValueError("Invalid number of labels: {}".format(self.num_labels))

        if self.config.problem_type == "single_label_classification":
            loss_fct = torch.nn.CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))

        elif self.config.problem_type == "multi_label_classification":
            loss_fct = torch.nn.BCEWithLogitsLoss(weight=torch.tensor([1.4411, 2.1129, 0.9927, 1.6995, 0.9038, 0.4126, 1.4150]).to("cuda"))
            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1, self.num_labels))

        elif self.config.problem_type == "regression":
            loss_fct = torch.nn.MSELoss()
            loss = loss_fct(logits.view(-1), labels.view(-1))
        else:
            raise ValueError("Problem_type {} not supported".format(self.config.problem_type))

        return loss

    @staticmethod
    def merged_strategy(
            hidden_states,
            mode="mean"
    ):
        """Merged strategy for pooling

        Args:
            hidden_states (torch.FloatTensor): hidden states
            mode (str, optional): pooling mode. Defaults to "mean".

        Returns:
            torch.FloatTensor: pooled hidden states
        """
        if mode == "mean":
            outputs = torch.mean(hidden_states, dim=1)
        elif mode == "sum":
            outputs = torch.sum(hidden_states, dim=1)
        elif mode == "max":
            outputs = torch.max(hidden_states, dim=1)[0]
        else:
            raise Exception(
                "The pooling method hasn't been defined! Your pooling mode must be one of these ['mean', 'sum', 'max']")

        return outputs


class AudioTextModelForSequenceBaseClassification(BaseClassificationModel):
    config_class = WavLMBertConfig

    def __init__(self, config):
        """
        Args:
            config (MultiModalConfig): config

        Attributes:
            config (MultiModalConfig): config
            num_labels (int): number of labels
            audio_config (Union[PretrainedConfig, None]): audio config
            text_config (Union[PretrainedConfig, None]): text config
            audio_model (Union[PreTrainedModel, None]): audio model
            text_model (Union[PreTrainedModel, None]): text model
            classifier (Union[torch.nn.Linear, None]): classifier
        """
        super().__init__(config)
        self.config = config
        self.num_labels = self.config.num_labels
        self.audio_config: Union[PretrainedConfig, None] = None
        self.text_config: Union[PretrainedConfig, None] = None
        self.audio_model: Union[PreTrainedModel, None] = None
        self.text_model: Union[PreTrainedModel, None] = None
        self.classifier: Union[torch.nn.Linear, None] = None


class FusionModuleQ(torch.nn.Module):
    def __init__(self, audio_dim, text_dim, num_heads, dropout=0.1):
        super().__init__()
        
        self.dimension = min(audio_dim, text_dim)
        
        # attention modules
        self.a_self_attention = torch.nn.MultiheadAttention(self.dimension, num_heads=num_heads)
        self.t_self_attention = torch.nn.MultiheadAttention(self.dimension, num_heads=num_heads)
        
        # layer norm
        self.audio_norm = torch.nn.LayerNorm(self.dimension)
        self.text_norm = torch.nn.LayerNorm(self.dimension)
        
    def forward(self, audio_output, text_output):
        # Multihead cross attention (dims ARE switched)
        audio_attn, _ = self.a_self_attention(audio_output, text_output, text_output)
        text_attn, _ = self.t_self_attention(text_output, audio_output, audio_output)
        
        # Add & Norm with dropout
        audio_add = self.audio_norm(audio_output + audio_attn)
        text_add = self.text_norm(text_output + text_attn)
        
        return audio_add, text_add


class AudioTextFusionModelForSequenceClassificaion(AudioTextModelForSequenceBaseClassification):
    def __init__(self, config):
        """
        Args:
            config (MultiModalConfig): config

        Attributes:
            fusion_module_1 (FusionModuleQ): Fusion Module Q 1
            fusion_module_2 (FusionModuleQ): Fusion Module Q 2
            audio_projector (Union[torch.nn.Linear, None]): Projection layer for audio embeds
            text_projector (Union[torch.nn.Linear, None]): Projection layer for text embeds
            audio_avg_pool (Union[torch.nn.AvgPool1d, None]): Audio average pool (out from fusion block)
            text_avg_pool (Union[torch.nn.AvgPool1d, None]): Text average pool (out from fusion block)
        """
        super().__init__(config)

        self.fusion_module_1: Union[FusionModuleQ, None] = None
        self.fusion_module_2: Union[FusionModuleQ, None] = None
        self.audio_projector: Union[torch.nn.Linear, None] = None
        self.text_projector: Union[torch.nn.Linear, None] = None
        self.audio_avg_pool: Union[torch.nn.AvgPool1d, None] = None
        self.text_avg_pool: Union[torch.nn.AvgPool1d, None] = None


class WavLMBertForSequenceClassification(AudioTextFusionModelForSequenceClassificaion):
    """
    WavLMBertForSequenceClassification is a model for sequence classification task
     (e.g. sentiment analysis, text classification, etc.) for fine-tuning

    Args:
        config (WavLMBertConfig): config

    Attributes:
        config (WavLMBertConfig): config
        audio_config (WavLMConfig): wavlm config
        text_config (BertConfig): bert config
        audio_model (WavLMModel): wavlm model
        text_model (BertModel): bert model
        fusion_module_1 (FusionModuleQ): Fusion Module Q 1
        fusion_module_2 (FusionModuleQ): Fusion Module Q 2
        audio_projector (Union[torch.nn.Linear, None]): Projection layer for audio embeds
        text_projector (Union[torch.nn.Linear, None]): Projection layer for text embeds
        audio_avg_pool (Union[torch.nn.AvgPool1d, None]): Audio average pool (out from fusion block)
        text_avg_pool (Union[torch.nn.AvgPool1d, None]): Text average pool (out from fusion block)
        classifier (torch.nn.Linear): classifier
    """
    def __init__(self, config):
        super().__init__(config)
        self.supports_gradient_checkpointing = getattr(config, "gradient_checkpointing", True)
        
        self.audio_config = WavLMConfig.from_dict(self.config.WavLMModel)
        self.text_config = BertConfig.from_dict(self.config.BertModel)
        self.audio_model = WavLMModel(self.audio_config)
        self.text_model = BertModel(self.text_config)
        
        # fusion module with V3 strategy (one projection on entry, no projection in continuous)
        self.fusion_module_1 = FusionModuleQ(self.audio_config.hidden_size, self.text_config.hidden_size, 
                                         self.config.num_heads, self.config.f_dropout)
        self.fusion_module_2 = FusionModuleQ(self.audio_config.hidden_size, self.text_config.hidden_size, 
                                         self.config.num_heads, self.config.f_dropout)
        
        self.audio_projector = torch.nn.Linear(self.audio_config.hidden_size, self.text_config.hidden_size)
        self.text_projector = torch.nn.Linear(self.text_config.hidden_size, self.text_config.hidden_size)
        
         # Avg Pool
        self.audio_avg_pool = torch.nn.AvgPool1d(self.config.kernel_size)
        self.text_avg_pool = torch.nn.AvgPool1d(self.config.kernel_size)
        
        # output dimensions of wav2vec2 and bert are 768 and 1024 respectively
        cls_dim = min(self.audio_config.hidden_size, self.text_config.hidden_size)
        self.classifier = torch.nn.Linear(
            (cls_dim * 2) // self.config.kernel_size, self.config.num_labels
        )
        self.init_weights()

    @staticmethod
    def _set_gradient_checkpointing(module, value=False):
        if isinstance(module, (WavLMEncoder, WavLMEncoderStableLayerNorm, WavLMFeatureEncoder, BertEncoder)):
            module.gradient_checkpointing = value
        
    def forward(
            self,
            input_ids=None,
            input_values=None,
            text_attention_mask=None,
            audio_attention_mask=None,
            token_type_ids=None,
            position_ids=None,
            head_mask=None,
            inputs_embeds=None,
            labels=None,
            output_attentions=None,
            output_hidden_states=None,
            return_dict=True,
    ):
        """Forward method for multimodal model for sequence classification task (e.g. text + audio)

        Args:
            input_ids (torch.LongTensor, optional): input ids. Defaults to None.
            input_values (torch.FloatTensor, optional): input values. Defaults to None.
            text_attention_mask (torch.LongTensor, optional): text attention mask. Defaults to None.
            audio_attention_mask (torch.LongTensor, optional): audio attention mask. Defaults to None.
            token_type_ids (torch.LongTensor, optional): token type ids. Defaults to None.
            position_ids (torch.LongTensor, optional): position ids. Defaults to None.
            head_mask (torch.FloatTensor, optional): head mask. Defaults to None.
            inputs_embeds (torch.FloatTensor, optional): inputs embeds. Defaults to None.
            labels (torch.LongTensor, optional): labels. Defaults to None.
            output_attentions (bool, optional): output attentions. Defaults to None.
            output_hidden_states (bool, optional): output hidden states. Defaults to None.
            return_dict (bool, optional): return dict. Defaults to True.

        Returns:
            torch.FloatTensor: logits
        """
        audio_output = self.audio_model(
            input_values=input_values,
            attention_mask=audio_attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict
        )
        text_output = self.text_model(
            input_ids=input_ids,
            attention_mask=text_attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        
        # Mean pooling
        audio_avg = self.merged_strategy(audio_output.last_hidden_state, mode=self.config.pooling_mode)
        
        # Projection
        audio_proj = self.audio_projector(audio_avg)
        text_proj = self.text_projector(text_output.pooler_output)
        
        audio_mha, text_mha = self.fusion_module_1(audio_proj, text_proj)
        audio_mha, text_mha = self.fusion_module_2(audio_mha, text_mha)
        
        audio_avg = self.audio_avg_pool(audio_mha)
        text_avg = self.text_avg_pool(text_mha)
        
        fusion_output = torch.concat((audio_avg, text_avg), dim=1)
        
        logits = self.classifier(fusion_output)
        loss = None

        if labels is not None:
            loss = self.compute_loss(logits, labels)

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits
        )