File size: 3,168 Bytes
98abb99 d5f4df0 98abb99 93cbb97 98abb99 93cbb97 2400fe9 93cbb97 2400fe9 93cbb97 98abb99 93cbb97 98abb99 93cbb97 98abb99 93cbb97 98abb99 93cbb97 98abb99 93cbb97 98abb99 0ce07fb 98abb99 93cbb97 98abb99 93cbb97 98abb99 93cbb97 98abb99 93cbb97 98abb99 93cbb97 98abb99 93cbb97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
---
license: mit
datasets:
- dair-ai/emotion
language:
- en
library_name: transformers
widget:
- text: I am so happy with the results!
- text: I am so pissed with the results!
tags:
- debarta
- debarta-xlarge
- emotions-classifier
---
# Emotion-X: Fine-tuned DeBERTa-Xlarge Based Emotion Detection
This is a fine-tuned version of [microsoft/deberta-xlarge-mnli](https://huggingface.co/microsoft/deberta-xlarge-mnli) for emotion detection on the [dair-ai/emotion](https://huggingface.co/dair-ai/emotion) dataset.
## Overview
Emotion-X is a state-of-the-art emotion detection model fine-tuned from Microsoft's DeBERTa-Xlarge model. Designed to accurately classify text into one of six emotional categories, Emotion-X leverages the robust capabilities of DeBERTa and fine-tunes it on a comprehensive emotion dataset, ensuring high accuracy and reliability.
## Model Details
- **Model Name:** `AnkitAI/deberta-xlarge-base-emotions-classifier`
- **Base Model:** `microsoft/deberta-xlarge-mnli`
- **Dataset:** [dair-ai/emotion](https://huggingface.co/dair-ai/emotion)
- **Fine-tuning:** This model was fine-tuned for emotion detection with a classification head for six emotional categories (anger, disgust, fear, joy, sadness, surprise).
## Training
The model was trained using the following parameters:
- **Learning Rate:** 2e-5
- **Batch Size:** 4
- **Weight Decay:** 0.01
- **Evaluation Strategy:** Epoch
### Training Details
- **Evaluation Loss:** 0.0858
- **Evaluation Runtime:** 110070.6349 seconds
- **Evaluation Samples/Second:** 78.495
- **Evaluation Steps/Second:** 2.453
- **Training Loss:** 0.1049
- **Evaluation Accuracy:** 94.6%
- **Evaluation Precision:** 94.8%
- **Evaluation Recall:** 94.5%
- **Evaluation F1 Score:** 94.7%
## Usage
You can use this model directly with the Hugging Face `transformers` library:
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model_name = "AnkitAI/deberta-xlarge-base-emotions-classifier"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Example usage
def predict_emotion(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128)
outputs = model(**inputs)
logits = outputs.logits
predictions = logits.argmax(dim=1)
return predictions
text = "I'm so happy with the results!"
emotion = predict_emotion(text)
print("Detected Emotion:", emotion)
```
## Emotion Labels
- Anger
- Disgust
- Fear
- Joy
- Sadness
- Surprise
## Model Card Data
| Parameter | Value |
|-------------------------------|------------------------------|
| Model Name | microsoft/deberta-xlarge-mnli |
| Training Dataset | dair-ai/emotion |
| Learning Rate | 2e-5 |
| Per Device Train Batch Size | 4 |
| Evaluation Strategy | Epoch |
| Best Model Accuracy | 94.6% |
## License
This model is licensed under the [MIT License](LICENSE).
|