File size: 3,168 Bytes
98abb99
 
 
 
 
 
 
d5f4df0
 
 
 
 
 
 
98abb99
 
93cbb97
98abb99
 
 
93cbb97
2400fe9
 
 
93cbb97
2400fe9
93cbb97
 
 
 
98abb99
93cbb97
98abb99
 
 
93cbb97
 
 
 
98abb99
93cbb97
98abb99
93cbb97
 
 
 
 
 
 
 
 
98abb99
93cbb97
98abb99
 
 
 
 
 
0ce07fb
98abb99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93cbb97
 
 
 
 
 
 
98abb99
93cbb97
98abb99
93cbb97
 
98abb99
93cbb97
 
 
 
 
98abb99
93cbb97
98abb99
93cbb97
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
license: mit
datasets:
- dair-ai/emotion
language:
- en
library_name: transformers
widget:
- text: I am so happy with the results!
- text: I am so pissed with the results!
tags:
- debarta
- debarta-xlarge
- emotions-classifier
---

# Emotion-X: Fine-tuned DeBERTa-Xlarge Based Emotion Detection

This is a fine-tuned version of [microsoft/deberta-xlarge-mnli](https://huggingface.co/microsoft/deberta-xlarge-mnli) for emotion detection on the [dair-ai/emotion](https://huggingface.co/dair-ai/emotion) dataset.

## Overview

Emotion-X is a state-of-the-art emotion detection model fine-tuned from Microsoft's DeBERTa-Xlarge model. Designed to accurately classify text into one of six emotional categories, Emotion-X leverages the robust capabilities of DeBERTa and fine-tunes it on a comprehensive emotion dataset, ensuring high accuracy and reliability.

## Model Details

- **Model Name:** `AnkitAI/deberta-xlarge-base-emotions-classifier`
- **Base Model:** `microsoft/deberta-xlarge-mnli`
- **Dataset:** [dair-ai/emotion](https://huggingface.co/dair-ai/emotion)
- **Fine-tuning:** This model was fine-tuned for emotion detection with a classification head for six emotional categories (anger, disgust, fear, joy, sadness, surprise).

## Training

The model was trained using the following parameters:

- **Learning Rate:** 2e-5
- **Batch Size:** 4
- **Weight Decay:** 0.01
- **Evaluation Strategy:** Epoch

### Training Details

- **Evaluation Loss:** 0.0858
- **Evaluation Runtime:** 110070.6349 seconds
- **Evaluation Samples/Second:** 78.495
- **Evaluation Steps/Second:** 2.453
- **Training Loss:** 0.1049
- **Evaluation Accuracy:** 94.6%
- **Evaluation Precision:** 94.8%
- **Evaluation Recall:** 94.5%
- **Evaluation F1 Score:** 94.7%

## Usage

You can use this model directly with the Hugging Face `transformers` library:

```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "AnkitAI/deberta-xlarge-base-emotions-classifier"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Example usage
def predict_emotion(text):
    inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128)
    outputs = model(**inputs)
    logits = outputs.logits
    predictions = logits.argmax(dim=1)
    return predictions

text = "I'm so happy with the results!"
emotion = predict_emotion(text)
print("Detected Emotion:", emotion)
```

## Emotion Labels
- Anger
- Disgust
- Fear
- Joy
- Sadness
- Surprise

## Model Card Data

| Parameter                     | Value                        |
|-------------------------------|------------------------------|
| Model Name                    | microsoft/deberta-xlarge-mnli |
| Training Dataset              | dair-ai/emotion              |
| Learning Rate                 | 2e-5                         |
| Per Device Train Batch Size   | 4                            |
| Evaluation Strategy           | Epoch                        |
| Best Model Accuracy           | 94.6%                        |

## License

This model is licensed under the [MIT License](LICENSE).